PhysicsDude1
- 8
- 0
Homework Statement
For the orthonormal coordinate system (X,Y) the metric is
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
Calculate G' in 2 ways.
1) G'= M^{T}*G*M
2) g\acute{}_{ij} = \overline{a}\acute{}_{i} . \overline{a}\acute{}_{j}
Homework Equations
\begin{pmatrix} \overline{a}\acute{}_{1} \\ \overline{a}\acute{}_{2} \end{pmatrix}
= \begin{pmatrix} -cos(\phi).\overline{a}\acute{}_{1} -\overline{a}\acute{}_{2} \\
cos(\phi).\overline{a}\acute{}_{2}\end{pmatrix}
M= \begin{pmatrix} -cos(\phi) & 0 \\ -1 & cos(\phi) \end{pmatrix}
M^{T} = \begin{pmatrix} -cos(\phi) & -1 \\ 0 & cos(\phi) \end{pmatrix}
G=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
=> G' = \begin{pmatrix} cos²(\phi) +1 & -cos(\phi) \\ -cos(\phi) & cos²(\phi) \end{pmatrix}
The Attempt at a Solution
So I'm having problems with the 2nd method i.e. g\acute{}_{ij} = \overline{a}\acute{}_{i} . \overline{a}\acute{}_{j}
g\acute{}_{11} = (-cos(\phi) . \overline{a}_{1} -\overline{a}_{2}) . (-cos(\phi) . \overline{a}_{1} -\overline{a}_{2}) = ?
What are the values for \overline{a}_{1} and \overline{a}_{2} ?
I think they're both 1 because they're both unit vectors of length 1 but I'm not sure.
Also, this is the first time ever I have used LaTeX so sorry if it's a bit sloppy.