MHB Calculating Joint Probability - Get the Answer!

  • Thread starter Thread starter Usagi
  • Start date Start date
  • Tags Tags
    Joint Probability
AI Thread Summary
The discussion revolves around understanding the calculation of joint probabilities, specifically how to derive the boxed expression in the provided image. Participants clarify that the joint probability of different variables can be shown to be equal due to the arbitrary nature of their labeling. It is noted that \(P(X_j=1,X_k=1)\) can be expressed in terms of \(P(X_1=1,X_2=1)\) and that this equality holds across different indices. The conversation emphasizes that the probabilities remain consistent regardless of the variable labels, allowing for permutations in the indices. Overall, the thread provides insights into the principles of joint probability calculations.
Usagi
Messages
38
Reaction score
0
http://img151.imageshack.us/img151/6002/variance.jpg

Just wondering, how did they get the part boxed in blue?

Thanks.
 
Mathematics news on Phys.org
Usagi said:
http://img151.imageshack.us/img151/6002/variance.jpg

Just wondering, how did they get the part boxed in blue?

Thanks.
The part in the box comes from the observation that:

\[P(X_j=1,X_k=1)=P(X_1=1,X_2=1), \ \ j\ne k\],

and that:

\[P(X_1=1,X_2=1)=P(X_1=1)+P(X_2=1|X_1=1)\]

CB
 
Thanks for that, I realized it too however how does one show that $P(X_j, X_i) = P(X_1, X_2) = P(X_1, X_5)$ and so on?

It isn't so obvious to me that $P(X_1, X_2) = P(X_1, X_5)$
 
Usagi said:
Thanks for that, I realized it too however how does one show that $P(X_j, X_i) = P(X_1, X_2) = P(X_1, X_5)$ and so on?

It isn't so obvious to me that $P(X_1, X_2) = P(X_1, X_5)$

The informal explanation is that as the labelling is essentialy arbitary the probabilities are all the same.

More formally:

\[P(X_1=1,X_2=1)=P(X_2=1)+P(X_2)P(X_1=1|P(X_2=1)\]

But \(P(X_2=1|X_1=1)=P(X_2=1|X_5=1)\) and \(P(X_2=1)=P(X_5=1)\). which look better but is still just an observation that the idexing is arbitary and you can just permute indices.

CB
 
Thanks :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top