Dembadon
Gold Member
- 658
- 89
Homework Statement
Consider the following function:
f(x) = 4x^2 - 8x.
Find the limit.
<br /> \lim_{{\Delta}x\rightarrow 0} \frac{f(x+{\Delta}x)-f(x)}{{\Delta}x}<br />
Given: The limit exists.
The Attempt at a Solution
Since the limit exists, I know that I need to do some algebraic manipulations that will enable me to cancel the {\Delta}x in the denominator.
Here's what I did first:
<br /> \frac{4(x+{\Delta}x)^2-8(x+{\Delta}x)}{{\Delta}x}<br />
After expanding:
<br /> \frac{4(x^2+2x{\Delta}x+{\Delta}x^2)-8(x+{\Delta}x)}{{\Delta}x}<br />
After distributing:
<br /> \frac{4x^2+8x{\Delta}x+4{\Delta}x^2-8x-8{\Delta}x}{{\Delta}x}<br />
Would my next step be?:
<br /> \frac{(4{\Delta}x^2+8x{\Delta}x-8{\Delta}x)+(4x^2-8x)}{{\Delta}x}<br />
...so that I could pull out the {\Delta}x and cancel it?