Calculating Offsets on the Normal Coordinate System

chemart
Messages
6
Reaction score
0
I have problem with getting normal coordinates offset. I have cube1 and cube2. cube1 position is 10,10,10 and cube2 position is 10,9,10. Cube 2 offset refers to local coordinate system of cube1. If rotation of cube1 is 0,0,0 i get position offset 0,-1,0. But if cube1 rotation is 45,0,0 i get offset 0,-0.7071,+0.7071. The problem is that offsets don't use normal coordinate system, they use local coordiante system of cube1. How do i get offsets on normal coordinate system?
 
Mathematics news on Phys.org
Euler rotations are a handy way for people to visualize simple rotations. There are many better alternatives to Euler rotations for describing rotations and transformations in three space. One approach that works very nicely with linear algebra is a transformation matrix. Your Euler rotation generates a transformation matrix to go from the "normal" to "local" coordinate frames:

<br /> \vec x_{2,\text{local}} =<br /> \mathbf{T}_{\text{normal}\to\text{local}}<br /> (\vec x_{2,\text{normal}}-\vec x_{1,\text{normal}})<br />

The above equation is invertible. Since the inverse of a transformation matrix is simply the transpose,

<br /> \vec x_{2,\text{normal}} =<br /> \vec x_{1,\text{normal}} +<br /> \mathbf{T}_{\text{normal}\to\text{local}}^T \vec x_{2,\text{local}}<br />
 
I don't understand your answer. Its actualy using quanternions for rotation but i used euler becouse i thought it will be easier. I am really not good at math so if anyone could explain answer or give me example it would be great.
 
I would suggest you try to understand it in small steps.

Step 1: How to build a matrix for a rotation in 2D.
Try to figure out the elements a,b,c,d of a 2x2 matrix, such that
<br /> \left[ \begin{array}{c} x&#039; \\ y&#039; \end{array} \right] =<br /> \left[ \begin{array}{cc} a &amp; b \\ c &amp; d \end{array} \right]<br /> \left[ \begin{array}{c} x \\ y \end{array} \right]<br />
where the vector (x,y) represents a point before the rotation, and the vector (x',y') is the point after being rotated.

Step 2: Now in 3D, build a 3x3 matrix that represent a rotation for one of the Euler angles, that is, around one of the standard axes, either the X-, Y- or Z-axis.

http://en.wikipedia.org/wiki/Rotation_matrix" can help you, and has a lot of examples.

Step 3: Combine (multiply) 3 matrices, 3x3 each, to obtain one matrix that represent the combined rotation for the three Euler angles. Note that the order in which you combine them is important: in your example, when you speak of a rotation of "45,0,0", this is very clear only because there is just one rotation; if you had two or three, you would need to define in which order you perform the rotations.

Now, after Steps 1-3 you know how to get a point in the "normal" coordinate system, and transform it (rotate it) into Cube1's system. But you want the opposite! From Cube1 to the "normal" system. To do that, you use the inverse of that matrix.

What D H was telling you above is that rotation matrices belong to a group of matrices called "orthogonal", which have a very nice property: their inverse is simply the transposed matrix. Just turn rows into columns, and you have the inverse.
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top