Calculating required pressure to maintain flowrate

  • Thread starter Thread starter bugatti79
  • Start date Start date
  • Tags Tags
    Flowrate Pressure
AI Thread Summary
To maintain a flow rate of 0.5L/min through a 1mm diameter hole, significant pressure is required due to the viscosity of the oil, especially under gravity. The discussion highlights that treating the scenario like a restriction orifice can provide insights, considering factors like discharge coefficients and Reynolds number. The complexities of viscous flow mean that simple hand calculations may not yield accurate results, as viscosity contributes to shear forces at the wall. The conversation emphasizes that the effects of viscosity are crucial in low-speed scenarios, making inviscid flow assumptions inadequate. Overall, a robust understanding of fluid dynamics principles is necessary for accurate pressure calculations in this context.
bugatti79
Messages
786
Reaction score
4
Folks,

I seek just a very rudimentary idea of what pressure is required to pump oil through a very small hole of 1mm diameter to maintain a flow rate of 0.5L/min. See attached.

I would imagine that under gravity that the flow rate would be very low because of the viscosity of the oil thus to maintain a this flow rate significant pressure would be required to push it through. Let's assume the oil container bore is 10mm diameter.

Any thoughts?

Regards
 

Attachments

  • IMAG0131.jpg
    IMAG0131.jpg
    7.9 KB · Views: 540
Engineering news on Phys.org
Can treat it like a restriction orifice. It will consider the discharge coefficients depending on thickness, viscosity, temperatures, diameters, reynolds #, etc. to give more accurate #'s

The head pressure required might make your container quite high?
 
darkside00 said:
Can treat it like a restriction orifice. It will consider the discharge coefficients depending on thickness, viscosity, temperatures, diameters, reynolds #, etc. to give more accurate #'s

The head pressure required might make your container quite high?

Well I have come across this link

http://en.wikipedia.org/wiki/Orifice_plate#Incompressible_flow_through_an_orifice

but it is only for inviscid flow, I am interested in viscous flow like oil. I guess a simple hand calculation is not possible...?
Basically I would like to argue the point that a very large pressure pump would be required to pump oil through a 1mm diameter at a rateof 500ml/min...
 
I think you're confusing what is involved in the viscous and invicsous flow assumptions. Any value of viscocity is going to make a contribution to the shear forces at the wall due to viscosity of the fluid. Making the assumption of inviscid flow depends on what area of the flow you are interested in. If you're after a value inside the boundary layer, close to the wall, then you might need equations to describe viscid flow. Otherwise their contributions to the flow somewhere else is usually negligible in problems like this one.

It really depends on the Reynolds number of the flow. For example, Air at high speeds is going to have more of an effect on the flow than oil at low speeds, even though oil has a much higher value than air.
 
bugatti79 said:
Folks,

I seek just a very rudimentary idea of what pressure is required to pump oil through a very small hole of 1mm diameter to maintain a flow rate of 0.5L/min. See attached.

I would imagine that under gravity that the flow rate would be very low because of the viscosity of the oil thus to maintain a this flow rate significant pressure would be required to push it through. Let's assume the oil container bore is 10mm diameter.

Any thoughts?

Regards

Vadar2012 said:
I think you're confusing what is involved in the viscous and invicsous flow assumptions. Any value of viscocity is going to make a contribution to the shear forces at the wall due to viscosity of the fluid. Making the assumption of inviscid flow depends on what area of the flow you are interested in. If you're after a value inside the boundary layer, close to the wall, then you might need equations to describe viscid flow. Otherwise their contributions to the flow somewhere else is usually negligible in problems like this one.

It really depends on the Reynolds number of the flow. For example, Air at high speeds is going to have more of an effect on the flow than oil at low speeds, even though oil has a much higher value than air.

Well I would be interested in low speeds,so it looks like a simple hand calculation is not possible?
 
For a simple/rough and incompressible calculation using bernoullis principle:

http://en.wikipedia.org/wiki/Bernoulli's_principle

E.g. (v1^2)/2 + g*z1 + P1/p = (v2^2)/2 + g*z2 + P2/p

This obviously ignores the losses but gives an idea. Also, assuming your pouring to atmosphere and using conservation of energy to get the initial velocity (pVA)in=(pVA)out
 
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
TL;DR Summary: Heard in the news about using sonar to locate the sub Hello : After the sinking of the ship near the Greek shores , carrying of alot of people , there was another accident that include 5 tourists and a submarine visiting the titanic , which went missing Some technical notes captured my attention, that there us few sonar devices are hearing sounds repeated every 30 seconds , but they are not able to locate the source Is it possible that the sound waves are reflecting from...
Back
Top