Calculating Spring Constant using Minimum Energy State of hydrogen atom

calphyzics09
Messages
3
Reaction score
0

Homework Statement



A hydrogen chloride molecule may be modeled as a hydrogen atom (mass: 1.67 x10^-27 kg ) on a spring; the other end of the spring is attached to a rigid wall (the massive chlorine atom).

If the minimum photon energy that will promote this molecule to its first excited state is 0.358 eV, find the "spring constant."



I'm not sure which equation to use. is it E=1/2kA^2? If so, what would the value of A be?

Thank you for your help!
 
Physics news on Phys.org
Shouldn't you be using the energy eigenvalues of the quantum harmonic oscillator, and not the classical potential energy of a spring?
 
I see...so what does that mean? I'm kind of confused
 
calphyzics09 said:
I see...so what does that mean? I'm kind of confused

I assume by this comment that you haven't covered the http://galileo.phys.virginia.edu/classes/252/SHO/SHO.html" . I'd recommend taking a glimpse over that link, it's a pretty simplistic essay on the quantum harmonic oscillator. But basically the energy eigenvalues of the QHO are given by

<br /> E_n=\hbar\omega\left(n+\frac{1}{2}\right)<br />

where \omega^2=k/m. So in the ground state, your energy equation would be

<br /> E_0=\frac{1}{2}\hbar\sqrt{\frac{k}{m}}<br />

So you can use this equation to solve for your spring constant k. (Just in the off chance you don't know what it is, \hbar=1.054\times10^{-34}\,\mathrm{m^2kg/s} and is the reduced Planck constant)

Edit: that was silly of me, forgot the power in \hbar!
 
Last edited by a moderator:
hmmm I used that formula and got 7.7 x 10^40..which is incorrect..am I using the wrong units? Thanks for your help btw
 
You need to do two things:
(1) convert eV into J: 0.358 \,\mathrm{eV}=5.73\times10^{-20}\mathrm{m^2kg/s^2}.
(2) let n=1 so that you can have the first excited state. I didn't catch this one earlier, but your energy eigenvalue should be

<br /> E_1=\frac{3\hbar}{2}\sqrt{\frac{k}{m}}<br />

leading to

<br /> k=\frac{4mE_1^2}{9\hbar^2}=\frac{4\cdot1.67 \times10^{-27} \mathrm{kg}\cdot(5.73\times10^{-20}\mathrm{m^2kg/s^2})^2}{9(1.05\times10^{-34}\mathrm{m^2kg/s^2})^2}\approx220<br />
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top