Calculating Surface Area Using Parametrization: Tilted Plane Inside Cylinder

  • Thread starter Thread starter cos(e)
  • Start date Start date
  • Tags Tags
    Surfaces
cos(e)
Messages
27
Reaction score
0

Homework Statement


Use parametrization to express the area of the surface as a double integral. tilted plane inside cylinder, the portion of the plane y+2z=2 inside the cylinder x^2+y^2=1



Homework Equations


the area of a smooth surface
r(u,v)=f(u,v)i+g(u,v)j+h(u,v)k a<=u<=b c<=v<=d
is
A=integral from c to d ( integral from a to b(|r subu X r subv|))dudv


The Attempt at a Solution


x=x z=z y=2-2z
r(x,z)=xi+(2-2z)j+zk
r subx=i
r subz=-2j+k
r subx X r subz=| i j k |=-j-2k
| 1 0 0 |
| 0 -2 1 |

|r subx X r subz |=sqrt(5)

Area=integral 0 to 2pi(integral from 0 to 1(sqrt(5)r))drd(theta)
=sqrt(5)*pi


yet the answers have:
Area=integral 0 to 2pi(integral from 0 to 1(sqrt(5)r/2))drd(theta)
=sqrt(5)*pi/2


can someone please help?
 
Physics news on Phys.org
You are integrating over the region in the x-y plane right? So you want r(x,y). And you want to integrate |r subx X r suby|. Express the surface in terms of x and y coordinates. Not x and z.
 
thanks :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top