ilvreth
- 33
- 0
The question is about the integration bellow.
We assume the the electric field wavefunction is E(t)=E_0(t) e^{-i \omega_0 t} and E_0(t)=A for t_1 \leq t \leq t_1 and zero when t<-t_1 , t>t_1.
Calculate the integral G(t)= \lim_{T\rightarrow \inf} \frac{1}{2T} \int_{-T}^{T} E(t)^{\ast} E(t+\tau) dt where \tau is a constant. My solution is the following
Step 1 G(t)= \lim_{T\rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} E(t)^{\ast} E(t+\tau) dt =
Step 2 \lim_{T\rightarrow t_1} \frac{1}{2T} \int_{-T}^{T} A^{\ast} e^{i\omega_0 t} A e^{-i\omega_0 t } e^{-i\omega_0 \tau} dt =
Step 3 \lim_{T\rightarrow t_1} \frac{1}{2T} \int_{-T}^{T} |A|^2 e^{-i\omega_0 \tau} dt =
Step 4 \lim_{T\rightarrow t_1} \frac{1}{2T} \left[ |A|^2 e^{-i\omega_0 \tau} t \right]^{T}_{-T} =
Step 5 \lim_{T\rightarrow t_1}\frac{1}{2T} |A|^2 e^{-i\omega_0 \tau} 2T =|A|^2 e^{-i\omega_0 \tau}The questions
1) Is the the step 1 to 2 correct?
2) Is the result correct?
We assume the the electric field wavefunction is E(t)=E_0(t) e^{-i \omega_0 t} and E_0(t)=A for t_1 \leq t \leq t_1 and zero when t<-t_1 , t>t_1.
Calculate the integral G(t)= \lim_{T\rightarrow \inf} \frac{1}{2T} \int_{-T}^{T} E(t)^{\ast} E(t+\tau) dt where \tau is a constant. My solution is the following
Step 1 G(t)= \lim_{T\rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} E(t)^{\ast} E(t+\tau) dt =
Step 2 \lim_{T\rightarrow t_1} \frac{1}{2T} \int_{-T}^{T} A^{\ast} e^{i\omega_0 t} A e^{-i\omega_0 t } e^{-i\omega_0 \tau} dt =
Step 3 \lim_{T\rightarrow t_1} \frac{1}{2T} \int_{-T}^{T} |A|^2 e^{-i\omega_0 \tau} dt =
Step 4 \lim_{T\rightarrow t_1} \frac{1}{2T} \left[ |A|^2 e^{-i\omega_0 \tau} t \right]^{T}_{-T} =
Step 5 \lim_{T\rightarrow t_1}\frac{1}{2T} |A|^2 e^{-i\omega_0 \tau} 2T =|A|^2 e^{-i\omega_0 \tau}The questions
1) Is the the step 1 to 2 correct?
2) Is the result correct?
Last edited: