Calculating the Integral of $\vec{F}\cdot\vec{c}\,\,'$

  • Thread starter Thread starter jonroberts74
  • Start date Start date
  • Tags Tags
    Integral
jonroberts74
Messages
189
Reaction score
0

Homework Statement



##\vec{c} = <\cos t, \sin t, 0>; 0 \le t \le \frac{\pi}{2}##

##\vec{F} = x\hat{i}-y\hat{j}+z\hat{k}##

Homework Equations


The Attempt at a Solution



##\vec{F}(\vec{c}(t)) = <\cos t, - \sin t, 0>##

##\vec{c}\,\,'(t) = <-\sin t, - \cos t, 0>##

##\displaystyle \int_{0}^{\pi/2} \vec{F}\cdot\vec{c}\,\,'(t)dt##

## \displaystyle \int_{0}^{\pi/2} [-\sin t\cos t + \sin t \cos t]dt = 0##

the answer should be -1 not 0 according to the book

If ## \displaystyle \int_{0}^{\pi/2} [-\sin t\cos t + \sin t \cos t]dt = 0## was ## \displaystyle \int_{0}^{\pi/2} [-\sin t\cos t - \sin t \cos t]dt = -1## then it would be correct
 
Physics news on Phys.org
Check ##c'(t)##.
 
  • Like
Likes 1 person
LCKurtz said:
Check ##c'(t)##.

ah, I know what I was doing, I was looking at ##\vec{F}(\vec{c}(t)))## when I was taking the derivative. silly
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top