Calculating the moment of inertia of a rod as a point mass

AI Thread Summary
The moment of inertia of a rod with uniform density rotating about its end is M(L^2)/3, while treating it as a point mass yields M(L^2)/4, which is incorrect due to the distance from the rotation axis squared. The kinetic energy of a rotating object consists of components related to both rotation and translational motion. Two methods can calculate kinetic energy: one considers pure rotation about the end point, while the other accounts for motion about the center of mass, incorporating translational energy. Both methods ultimately yield the same result for kinetic energy, highlighting the importance of correctly accounting for rotational dynamics. Understanding these principles is crucial for accurate calculations in rotational mechanics.
ItDoesn'tMatter
Messages
5
Reaction score
0
The moment of inertia of a rod with consistent density rotating about its end is M(L^2)/3. However, if you treat the rod as a point mass and try to calculate this using mr^2, you get M(L/2)^2=M(L^2)/4. Why doesn't this work?
 
Physics news on Phys.org
Because the formula has a distance from the rotation axis squared in it ! That's why.

Simple case to try out: two point masses at the ends of a massless stick.
 
The moment of inertia is generally used to calculate the kinetic energy of a rotating object.

The kinetic energy of your rod -- or any rigid body -- is composed of one part having to do with the rotation of the body about some axis fixed in the body and one part having to do with the translational motion of a point on that axis. If the point with respect to which the rotation is defined is stationary, then translational kinetic energy does not factor into the calculation; if the point is moving then translational kinetic energy does factor into the calculation.

There are two ways of calculating the kinetic energy in your problem. One is to find the moment of inertia about the end point and treat the motion as a pure rotation (i.e. no translational part). This gives, as you say, $$T=\frac{1}{2}I\omega ^2 = \frac{ml^2}{6}\omega ^2.$$

The other way of doing it is to calculate the moment of inertia about the center of mass, which is moving, so that we must add in a translational part. The moment of inertia about the center of mass is ##\frac{1}{12}ml^2## so we have $$T=\frac{1}{2}I\omega^2 + \frac{1}{2} m v^2 = \frac{1}{24}ml^2\omega^2 + \frac{1}{2}m\bigg(\frac{l\omega}{2}\bigg)^2 = \frac{ml^2}{6}\omega^2.$$

Clearly they are the same. So what you are doing when you get the wrong answer is essentially you are calculating the energy due to translation of the center of mass and ignoring the fact that there is also a rotation about the center of mass.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top