Calculating the residue of a complex function

Robin04
Messages
259
Reaction score
16
Homework Statement
Calculate the residue of the following function at its singularities: ##f(z)=\frac{e^{i\omega z}\lambda z}{(z^2+\lambda^2)^2}##
Relevant Equations
-
The singularities occur at ##z = \pm i\lambda##. As ##\frac{d}{dz}(z^2+\lambda^2)^2|_{z=\pm i\lambda}=0##, these singularities aren't first order and the residues cannot be calculated with differentiating the denominator and evaluating it at the singularities. What is the general method to determine the Laurent series?
 
Physics news on Phys.org
Wikipedia has your example, https://de.wikipedia.org/wiki/Residuensatz, but I'm too lazy to translate and adapt it to your exact situation. I suggest to use the translation functionality in chrome. It worked quite well here:
243694
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top