Calculating the Time for a Car Chase: Kinematics Question

AI Thread Summary
The discussion revolves around a kinematics problem involving a police car and a speeder, where the police car accelerates after one second. Initially, the police car travels at 26.4 m/s while the speeder goes at 37.5 m/s, leading to a displacement difference after the first second. The calculations show that the time for the police car to catch the speeder is approximately 12.2 seconds, but after considering the initial second, the correct time is adjusted to around 13 seconds. Participants clarify their equations and reasoning, ultimately confirming the need to account for the initial delay in the police car's acceleration. The final consensus indicates that the correct answer is approximately 13.02 seconds.
vbrasic
Messages
71
Reaction score
3

Homework Statement


We have that a police car is traveling at ##26.4## m/s, and that at a time, ##t=0##, a car speeds by at ##37.5## m/s. After ##1## s, the police car accelerates constantly at ##2## m/s2. We are asked to find the time, ##t##, where the police car catches the speeder.

Homework Equations


##v_f=v_i+at##, and ##s=v_0t+\frac{1}{2}at^2##. (Standard kinematics equations.)

The Attempt at a Solution


Granted that the police car is not accelerating for the first second, I chose to simply begin analyzing the motion at the ##1## s mark. In the first second, the police car moves, ##26.4## m, while the speeder moves, ##37.5## m. We have then, in this frame, that the speeder's displacement after ##1## s is given by, ##(37.5-26.4)+37.5t##. That is, I simply state that the initial position of the speeder is given by the displacement between the two vehicles after ##1## s. The police car's displacement is ##26.4t+t^2##. We simply rearrange then to solve the quadratic for ##t##, such that ##t=12.2## s. My book says the answer is ##13## s. I'm not sure if this is simply due to a rounding error, or if there's something wrong with my logic.
 
  • Like
Likes sunnnystrong
Physics news on Phys.org
Use: X-Xo = VoT + 1/2AT^2
For the police car:
X-Xo = 1/2(2)(T-1)^2 + (26.4)T
For the car:
X-Xo = (37.5)T

Set them equal to each other & solve for T :)
The trick is realizing that the police car has two components for distance...
 
vbrasic said:
t=12.2 s
I got 12.02 s as an answer.

Edit: I thought your method looked good.

Edit2: Oops. We both forgot to add back in the 1 second, so the answer looks like it should be 13.02 s.
 
  • Like
Likes sunnnystrong
sunnnystrong said:
For the police car:
X-Xo = 1/2(2)(T-1)^2 + (26.4)T
For the car:
X-Xo = (37.5)T
That will work too, but for the police car I think it should be:
x-xo = (0.5)(2)(t-1)2 + 26.4(t-1)
Edit: I'm sorry. If you are using xo = 0, then your equation is correct as it is written. That is probably what you intended.
 
Last edited:
  • Like
Likes sunnnystrong
TomHart said:
Edit2: Oops. We both forgot to add back in the 1 second, so the answer looks like it should be 13.02 s.

Well that explains it. I knew I was missing something. Thanks.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top