Calculating the Volume of a Sphere Using Spherical and Rectangular Coordinates

dhlee528
Messages
1
Reaction score
0

Homework Statement



http://staff.washington.edu/dhlee528/003.JPG

Homework Equations



x = r sin ( phi) cos ( theta)

y = r sin ( phi )sin (theta)

z = r cos ( phi )


The Attempt at a Solution



<br /> vol=8 \int_0^\frac{\pi}{2}\int_0^\frac{\pi}{2}\int_0^r \rho^2 \sin(\phi)d\rho d\theta d\phi <br />

<br /> 8 \int_0^\frac{\pi}{2}\int_0^\frac{\pi}{2} \sin(\phi)(\frac{\rho^3}{3}){|}_0^r d\theta d\phi <br />

<br /> \frac{4r^3 \pi}{3}\int_0^\frac{\pi}{2}sin(\phi)d\phi <br />

<br /> -\frac{4r^3\pi}{3}[0-1]=\frac{4\pi r^3}{3}<br />



I think I got spherical coordinate right but don't know how to do for rectangular or spherical coordinate
 
Last edited by a moderator:
Physics news on Phys.org
Welcome to PF!

Hi dhlee528! Welcome to PF! :smile:

(have a theta: θ and a phi: φ and a pi: π :wink:)

For rectangular coordinates: obviouly the volume element is dxdydz, so decide which order you're going to integrate in … say keep z and y fixed, decide the limits on x; then keep z fixed, decide the limits on y.

What do you get? :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top