Calculating Thermal Energy of Hot Air Flow

AI Thread Summary
To calculate the thermal energy of hot air at 250°C with a flow rate of 11,000 m³/h, first determine the mass flow rate by multiplying the volumetric flow rate by the air's density, which varies with pressure and temperature. The specific internal energy, a function of temperature for ideal gases, is essential for this calculation. The temperature difference referenced is between the hot air and the surrounding atmosphere, but for exhaust calculations, the focus should be on the exhaust temperature itself. The formula for thermal energy involves the mass flow rate, specific energy, and temperature difference. This approach will yield the desired thermal energy calculation for the hot air.
wat681
Messages
2
Reaction score
0
haw can i calculate the thermal energy (watt or BTU ) of the hot air (or the exhaust air of the chimney) according to the following :

Temp. : 250 C
hot air flow rate : 11 000 m3/h


thanks
 
Engineering news on Phys.org
You need to multiply the mass flow rate by the specific internal energy.

Mass flow rate equals the volumetric flow rate times the density, which is a function of pressure and temperature. Specific internal energy is a function of pressure and temperature, or just a function of temperature for an ideal gas.
 
You alsoneed to subtract the temp of the outside air.
 
thanks for reply
i got the following formula for the thermal energy :

Flow rate (m3/h) * Density (Kg/m3) * specific energy (KJ/Kg K) * temp. deference (K)

my question , what is the temperature deference ? is it between the hot air and the atmosphere temperature ?
because i don't want to heat this air i Have the hot air at 200 C and want to calculate the thermal energy of it


thanks
 
If you just want the thermal energy of the exhaust, do what I originally said. You need to multiply the mass flow rate by the specific internal energy [kJ/kg], which is just a function of the temperature for an ideal gas (u=2.5*R*T for a diatomic gas). The temperature you should use is the exhaust temperature.

Now, on the other hand, if you are looking for the heat from combustion, you can apply the first law for an open system and find the Q=m_dot*(h_out-h_in)=m_dot*c_p*(T_out-T_in), where T_in would be the intake temperature, and T_out would be the exhaust temperature and this is likely the temperature difference russ was referring to. But it sounds like that is not what you are looking for, so just refer to my original response.
 
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Calculate minimum RPM to self-balance a CMG on two legs'
Here is a photo of a rough drawing of my apparatus that I have built many times and works. I would like to have a formula to give me the RPM necessary for the gyroscope to balance itself on the two legs (screws). I asked Claude to give me a formula and it gave me the following: Let me calculate the required RPM foreffective stabilization. I'll use the principles of gyroscopicprecession and the moment of inertia. First, let's calculate the keyparameters: 1. Moment of inertia of...
Back
Top