and for the second one, Maple says:
<br />
1/4\, \left( -12\,i{R}^{4}{\it h0}\,{\rm arctanh} \left( {\frac {{R}^{<br />
2}+i\sqrt {{\it h0}+2\,R}\sqrt {{\it h0}}x}{ \left( {\it h0}+R<br />
\right) \sqrt {{R}^{2}-{x}^{2}}}} \right) {x}^{2}-12\,i{R}^{4}{\it h0<br />
}\,{\rm arctanh} \left( {\frac {-{R}^{2}+i\sqrt {{\it h0}+2\,R}\sqrt {<br />
{\it h0}}x}{ \left( {\it h0}+R \right) \sqrt {{R}^{2}-{x}^{2}}}}<br />
\right) {x}^{2}-18\,i{R}^{3}{{\it h0}}^{2}{\rm arctanh} \left( {<br />
\frac {{R}^{2}+i\sqrt {{\it h0}+2\,R}\sqrt {{\it h0}}x}{ \left( {\it <br />
h0}+R \right) \sqrt {{R}^{2}-{x}^{2}}}} \right) {x}^{2}-18\,i{R}^{3}{{<br />
\it h0}}^{2}{\rm arctanh} \left( {\frac {-{R}^{2}+i\sqrt {{\it h0}+2\,<br />
R}\sqrt {{\it h0}}x}{ \left( {\it h0}+R \right) \sqrt {{R}^{2}-{x}^{2}<br />
}}} \right) {x}^{2}-6\,i{R}^{2}{{\it h0}}^{3}{\rm arctanh} \left( {<br />
\frac {-{R}^{2}+i\sqrt {{\it h0}+2\,R}\sqrt {{\it h0}}x}{ \left( {\it <br />
h0}+R \right) \sqrt {{R}^{2}-{x}^{2}}}} \right) {x}^{2}-6\,i{R}^{2}{{<br />
\it h0}}^{3}{\rm arctanh} \left( {\frac {{R}^{2}+i\sqrt {{\it h0}+2\,R<br />
}\sqrt {{\it h0}}x}{ \left( {\it h0}+R \right) \sqrt {{R}^{2}-{x}^{2}}<br />
}} \right) {x}^{2}-3\,i{R}^{2}{\it h0}\,{\rm arctanh} \left( {\frac {{<br />
R}^{2}+i\sqrt {{\it h0}+2\,R}\sqrt {{\it h0}}x}{ \left( {\it h0}+R<br />
\right) \sqrt {{R}^{2}-{x}^{2}}}} \right) {x}^{4}-3\,i{R}^{2}{\it h0}<br />
\,{\rm arctanh} \left( {\frac {-{R}^{2}+i\sqrt {{\it h0}+2\,R}\sqrt {{<br />
\it h0}}x}{ \left( {\it h0}+R \right) \sqrt {{R}^{2}-{x}^{2}}}}<br />
\right) {x}^{4}+6\,\sqrt {R+x}\sqrt {R-x}{{\it h0}}^{9/2}\sqrt {{\it <br />
h0}+2\,R}x+2\,\sqrt {R+x}\sqrt {R-x}{{\it h0}}^{5/2}\sqrt {{\it h0}+2<br />
\,R}{x}^{3}+4\,{{\it h0}}^{11/2}\sqrt {{\it h0}+2\,R}x+24\,{R}^{5}<br />
\arctan \left( {\frac {x}{\sqrt {{\it h0}}\sqrt {{\it h0}+2\,R}}}<br />
\right) {{\it h0}}^{2}+30\,{R}^{3}\arctan \left( {\frac {x}{\sqrt {{<br />
\it h0}}\sqrt {{\it h0}+2\,R}}} \right) {{\it h0}}^{4}+48\,{R}^{4}<br />
\arctan \left( {\frac {x}{\sqrt {{\it h0}}\sqrt {{\it h0}+2\,R}}}<br />
\right) {{\it h0}}^{3}+6\,{R}^{3}\arctan \left( {\frac {x}{\sqrt {{<br />
\it h0}}\sqrt {{\it h0}+2\,R}}} \right) {x}^{4}+6\,{R}^{2}\arctan<br />
\left( {\frac {x}{\sqrt {{\it h0}}\sqrt {{\it h0}+2\,R}}} \right) {{<br />
\it h0}}^{5}+20\,{R}^{4}{{\it h0}}^{3/2}\sqrt {{\it h0}+2\,R}x+6\,{R}^<br />
{3}\sqrt {{\it h0}}\sqrt {{\it h0}+2\,R}{x}^{3}+46\,{R}^{3}{{\it h0}}^<br />
{5/2}\sqrt {{\it h0}+2\,R}x+42\,{R}^{2}{{\it h0}}^{7/2}\sqrt {{\it h0}<br />
+2\,R}x+6\,{R}^{2}{{\it h0}}^{3/2}\sqrt {{\it h0}+2\,R}{x}^{3}+20\,{{<br />
\it h0}}^{9/2}\sqrt {{\it h0}+2\,R}xR+36\,{R}^{3}\arctan \left( {<br />
\frac {x}{\sqrt {{\it h0}}\sqrt {{\it h0}+2\,R}}} \right) {{\it h0}}^{<br />
2}{x}^{2}+6\,{R}^{2}\arctan \left( {\frac {x}{\sqrt {{\it h0}}\sqrt {{<br />
\it h0}+2\,R}}} \right) {\it h0}\,{x}^{4}+12\,{R}^{2}\arctan \left( {<br />
\frac {x}{\sqrt {{\it h0}}\sqrt {{\it h0}+2\,R}}} \right) {{\it h0}}^{<br />
3}{x}^{2}+24\,{R}^{4}\arctan \left( {\frac {x}{\sqrt {{\it h0}}\sqrt {<br />
{\it h0}+2\,R}}} \right) {\it h0}\,{x}^{2}-12\,i{R}^{5}{{\it h0}}^{2}{<br />
\rm arctanh} \left( {\frac {-{R}^{2}+i\sqrt {{\it h0}+2\,R}\sqrt {{<br />
\it h0}}x}{ \left( {\it h0}+R \right) \sqrt {{R}^{2}-{x}^{2}}}}<br />
\right) -12\,i{R}^{5}{{\it h0}}^{2}{\rm arctanh} \left( {\frac {{R}^{<br />
2}+i\sqrt {{\it h0}+2\,R}\sqrt {{\it h0}}x}{ \left( {\it h0}+R<br />
\right) \sqrt {{R}^{2}-{x}^{2}}}} \right) -24\,i{R}^{4}{{\it h0}}^{3}<br />
{\rm arctanh} \left( {\frac {-{R}^{2}+i\sqrt {{\it h0}+2\,R}\sqrt {{<br />
\it h0}}x}{ \left( {\it h0}+R \right) \sqrt {{R}^{2}-{x}^{2}}}}<br />
\right) -24\,i{R}^{4}{{\it h0}}^{3}{\rm arctanh} \left( {\frac {{R}^{<br />
2}+i\sqrt {{\it h0}+2\,R}\sqrt {{\it h0}}x}{ \left( {\it h0}+R<br />
\right) \sqrt {{R}^{2}-{x}^{2}}}} \right) -15\,i{R}^{3}{{\it h0}}^{4}<br />
{\rm arctanh} \left( {\frac {-{R}^{2}+i\sqrt {{\it h0}+2\,R}\sqrt {{<br />
\it h0}}x}{ \left( {\it h0}+R \right) \sqrt {{R}^{2}-{x}^{2}}}}<br />
\right) -15\,i{R}^{3}{{\it h0}}^{4}{\rm arctanh} \left( {\frac {{R}^{<br />
2}+i\sqrt {{\it h0}+2\,R}\sqrt {{\it h0}}x}{ \left( {\it h0}+R<br />
\right) \sqrt {{R}^{2}-{x}^{2}}}} \right) -3\,i{R}^{3}{\rm arctanh}<br />
\left( {\frac {{R}^{2}+i\sqrt {{\it h0}+2\,R}\sqrt {{\it h0}}x}{<br />
\left( {\it h0}+R \right) \sqrt {{R}^{2}-{x}^{2}}}} \right) {x}^{4}-3<br />
\,i{R}^{3}{\rm arctanh} \left( {\frac {-{R}^{2}+i\sqrt {{\it h0}+2\,R}<br />
\sqrt {{\it h0}}x}{ \left( {\it h0}+R \right) \sqrt {{R}^{2}-{x}^{2}}}<br />
} \right) {x}^{4}-3\,i{R}^{2}{{\it h0}}^{5}{\rm arctanh} \left( {<br />
\frac {-{R}^{2}+i\sqrt {{\it h0}+2\,R}\sqrt {{\it h0}}x}{ \left( {\it <br />
h0}+R \right) \sqrt {{R}^{2}-{x}^{2}}}} \right) -3\,i{R}^{2}{{\it h0}}<br />
^{5}{\rm arctanh} \left( {\frac {{R}^{2}+i\sqrt {{\it h0}+2\,R}\sqrt {<br />
{\it h0}}x}{ \left( {\it h0}+R \right) \sqrt {{R}^{2}-{x}^{2}}}}<br />
\right) +20\,{R}^{3}\sqrt {R+x}\sqrt {R-x}{{\it h0}}^{3/2}\sqrt {{<br />
\it h0}+2\,R}x+34\,{R}^{2}\sqrt {R+x}\sqrt {R-x}{{\it h0}}^{5/2}\sqrt <br />
{{\it h0}+2\,R}x+24\,R\sqrt {R+x}\sqrt {R-x}{{\it h0}}^{7/2}\sqrt {{<br />
\it h0}+2\,R}x+4\,R\sqrt {R+x}\sqrt {R-x}{{\it h0}}^{3/2}\sqrt {{\it <br />
h0}+2\,R}{x}^{3}+6\,{R}^{2}\sqrt {R+x}\sqrt {R-x}\sqrt {{\it h0}}<br />
\sqrt {{\it h0}+2\,R}{x}^{3} \right) \left( -x+i\sqrt {{\it h0}+2\,R}<br />
\sqrt {{\it h0}} \right) ^{-2} \left( x+i\sqrt {{\it h0}+2\,R}\sqrt {{<br />
\it h0}} \right) ^{-2} \left( {\it h0}+2\,R \right) ^{-5/2}{{\it h0}}^<br />
{-5/2}<br />
but this window doesn't show the whole thing in either case.