Calculating Vector Distance in R^n Using Dot Product - Homework Solution

  • Thread starter Thread starter phrygian
  • Start date Start date
  • Tags Tags
    Vectors
phrygian
Messages
77
Reaction score
0

Homework Statement



Let x and y be vectos in R^n such that ||x|| = ||y|| = 1 and x^T * y = 0. Use Eq. (1) to show that ||x-y|| = sqrt(2).

Homework Equations



Eq. (1): ||x|| = sqrt(x^T * X)

The Attempt at a Solution



I could figure this out knowing that the dot product of the vectors is zero so the are perpendicular, the two sides of the triangle are 1 so the distance is sqrt(2) but this problem wants the answer to be found with Eq. (1) and I don't know how to do that and how to find ||x-y||.

Thanks for the help
 
Physics news on Phys.org
phrygian said:

Homework Statement



Let x and y be vectos in R^n such that ||x|| = ||y|| = 1 and x^T * y = 0. Use Eq. (1) to show that ||x-y|| = sqrt(2).

Homework Equations



Eq. (1): ||x|| = sqrt(x^T * X)

The Attempt at a Solution



I could figure this out knowing that the dot product of the vectors is zero so the are perpendicular, the two sides of the triangle are 1 so the distance is sqrt(2) but this problem wants the answer to be found with Eq. (1) and I don't know how to do that and how to find ||x-y||.

Thanks for the help
Your formula says that ||x- y||= \sqrt{(x- y)^T(x- y)}= \sqrt{x^Tx- x^Ty- y^Tx+ y^Ty}. Both x^Ty and y^Tx are 0.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top