Calculating Work Done by a Variable Force

  • Thread starter Thread starter Sarah Kenney
  • Start date Start date
  • Tags Tags
    Force
AI Thread Summary
The force acting on an object is defined by the function Fx(x) = ax^2 + bx^3, with specific values for a and b. The work done on the object as it moves from x = -0.40 m to x = 2.0 m is calculated to be 6.1 J. The initial calculations attempted to find the force at the endpoints but did not account for the variable nature of the force. To accurately determine the work done, calculus is required to integrate the force function over the specified distance. Understanding this approach clarifies how to arrive at the correct answer.
Sarah Kenney
Messages
10
Reaction score
1

Homework Statement


The force exerted on a certain object varies with the object's position according to the function Fx(x)=ax^2+bx^3 where a = 3 N/m^2 and b = -0.50 N/m^3 .

What is the work done on the object by this force as the object moves from x=−0.40 m to x = 2.0 m?

Homework Equations


W=F*x

The Attempt at a Solution


Ok, I know that the answer is 6.1 J, I just don't know how they arrived at that conclusion. My attempt:
Fx(x)=(3)(-0.4)^2+(-0.5)(-0.4)^3 =0.512
Fx(x)=(3)((2)^2+(-0.5)(2)^3=8

Then I subtracted those two numbers to get 8-0.512=7.488 J
That's kind of close, but not quite. What am I doing wrong?
 
Physics news on Phys.org
Sarah Kenney said:
Ok, I know that the answer is 6.1 J, I just don't know how they arrived at that conclusion. My attempt:
Fx(x)=(3)(-0.4)^2+(-0.5)(-0.4)^3 =0.512
Fx(x)=(3)((2)^2+(-0.5)(2)^3=8
What you've done is calculate the value of the force at the two endpoints. Fx(x) is the value of the force as a function of x.

What's the definition of work? Hint: Since the force varies with position, you'll need a bit of calculus to find the work done.
 
  • Like
Likes Sarah Kenney
It makes sense now. Thank you so much!
 
  • Like
Likes Doc Al
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top