Calculating Work Done by Friction in a Circular Track

AI Thread Summary
The discussion revolves around calculating the work done by friction on a block sliding in a vertical circular track. The block's mass is 0.0425 kg, and the normal forces at the bottom and top of the track are 4.00 N and 0.670 N, respectively. The initial calculations for radial acceleration and velocity squared are provided, leading to a work equation that yields a result of -0.33 J. However, the user realizes a mistake in calculating gravitational potential energy by incorrectly multiplying by the radius instead of the height. The correct answer is identified as -0.166 J, highlighting the importance of accurate calculations in physics problems.
Treefolk
Messages
5
Reaction score
0
Calculating Work Done by Friction in a Circular Track (Answered)

Homework Statement


A small block with mass 0.0425kg slides in a vertical circle of radius 0.400m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, the magnitude of the normal force exerted on the block by the track has magnitude 4.00N. In this same revolution, when the block reaches the top of its path, the magnitude of the normal force exerted on the block has magnitude 0.670N.

Homework Equations


W = K2 + U2 - K1 - U1
K=.5*m*v^2
U=mgh
F=ma
a=v^2 / r

The Attempt at a Solution


The easiest method to approach this problem appeared to be to compare the difference in energy between the two points and solve for W.
At the bottom of the circle:
N = mg + ma = m(g+a) <-- This is from the FBD I drew out, the normal force equates to gravity force + radial acceleration.
4 = .0425(9.81+a)
94.1=9.81+a
a=84.3 <-- Radial acceleration
84.3 = v^2 / .4
33.72 = v^2 <--since my later equation contains v^2 as a variable, I didn't feel I needed to take the square root.

At the top of the circle:
ma = N + mg --> N = ma - mg = m(a-g) <-- Again, FBD. Similar process to above for the work.
.67 = .0425(a-9.81)
15.76 = a-9.81
a = 25.57
v^2 = 25.57(.4)
v^2 = 10.228

Now plugging this into my Work equation (W = (.5mv^2 + mgh - .5mv^2))
W = .0425(.5(10.228) + (9.81*.8) - .5(33.72))
W = .0425(5.114 + 3.924 - 16.86)
W = -.33 J <-- Now this sign on this answer makes sense (frictional force would be negative), but the online homework spat it back as a wrong answer. Does anyone have any insights or hints towards the proper answer?

(The issue I had was a simple work error that I made on paper.)
 
Last edited:
Physics news on Phys.org
Treefolk said:
Now plugging this into my Work equation (W = (.5mv^2 + mgh - .5mv^2))
W = .0425(.5(10.228) + (9.81*.8) - .5(33.72))
W = .0425(5.114 + 3.924 - 16.86)
W = -.33 J <-- Now this sign on this answer makes sense (frictional force would be negative), but the online homework spat it back as a wrong answer. Does anyone have any insights or hints towards the proper answer?

Could this perhaps be the issue 9,81*0,8=7,848?
 
Last edited:
That's exactly my issue. I was multiplying by the radius, not the height.
Much appreciated!

(For reference, the correct answer is -.166J)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top