Can a Killing Vector Field Prove v^\mu \nabla_\alpha R=0?

loops496
Messages
24
Reaction score
3

Homework Statement


Suppose v^\mu is a Killing Vector field, the prove that:
v^\mu \nabla_\alpha R=0

Homework Equations


1) \nabla_\mu \nabla_\nu v^\beta = R{^\beta_{\mu \nu \alpha}} v^\alpha
2) The second Bianchi Identity.
3) If v^\mu is Killing the it satisfies then Killing equation, viz. \nabla_\mu v_\nu - \nabla_\nu v_\mu=0

The Attempt at a Solution


I know I should use normal coordinates making my life easier with the Christoffels and use the that the Riemann tensor appears when I have two covariant derivatives acting on a vector field, but I'm stuck and can't figure out how to proceed :(. Any help will be greatly appreciated.

M.
 
Last edited:
Physics news on Phys.org
The equation you wrote down to prove would require that ##\nabla_\alpha R =0##. Perhaps you meant ## v^\mu \nabla_\mu R =0##? Also the Killing equation has a + sign: i.e. ##\nabla_\mu v_\nu + \nabla_\nu v_\mu =0##.

If so, you should be able to start with the expression ##\nabla_\nu (v^\mu {R^\nu}_\mu)##. You will need to use (1), the 2nd Bianchi identity in the form ##2 \nabla_\nu {R^\nu}_\mu = \nabla_\mu R## and the Killing equation will make various expressions vanish by symmetry of indices.
 
  • Like
Likes loops496
You're totally rigth fzero, it is v^\mu \nabla_\mu R=0 and I mistyped the sign killing equation (ooops sorry) shame on me :/.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top