MHB Can a Matrix Satisfy \(A^2 = A\) and be Non-Singular?

  • Thread starter Thread starter skoker
  • Start date Start date
skoker
Messages
10
Reaction score
0
i have a simple proof is this correct?

prove that if \(A^2=A\), then either A=I or A is singular.

let A be a non singular matrix. then \(A^2=A, \quad A^{-1}A^2=A^{-1}A, \quad IA=I, \quad A=I\) therefore \(A^2=A.\)
 
Physics news on Phys.org
skoker said:
let A be a non singular matrix. then \(A^2=A, \quad A^{-1}A^2=A^{-1}A, \quad IA=I, \quad A=I\)

Right

therefore \(A^2=A.\)

Why do you write this? $A^2=A$ just by hypothesis.
 
Fernando Revilla said:
Right
Why do you write this? $A^2=A$ just by hypothesis.

i suppose that is redundant or unnecessary. i was not sure if it needs a conclusion with the 'therefore'.
 
skoker said:
i suppose that is redundant or unnecessary. i was not sure if it needs a conclusion with the 'therefore'.

The therefore should go before the \(A=I\) and you should stop at that point.

CB
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
7
Views
2K
Replies
19
Views
3K
Replies
4
Views
2K
Replies
5
Views
1K
Replies
1
Views
3K
Replies
3
Views
1K
Back
Top