Can a Step Down Transformer Handle Universal Input for a Linear Power Supply?

AI Thread Summary
Step down transformers can be designed to handle universal input voltages, but they typically require manual switching between voltage ranges. These transformers often have dual windings that can be configured for either 110-120VAC or 220-240VAC inputs. In contrast, switch mode power supplies (SMPS) can automatically adjust to a wide range of input voltages and maintain stable output through feedback mechanisms, often utilizing pulse-width modulation (PWM). When selecting a transformer, it's crucial to consider both the voltage and frequency ratings to avoid saturation issues. Understanding these differences is essential for building a reliable linear power supply.
iflabs
Messages
11
Reaction score
0
Building a simple linear power supply for a project and need to spec out a transformer. I have no idea how they're built and used in the industry. I was instead handed a 120VAC input with a 24VAC output and 2A max step down transformer. I am content with it for the moment.

But I'm looking to make my power supply universal. The question is, are there step down transformers available that can handle 100-240VAC 50-60HZ inputs? Or is this feature exclusive to switching power supplies?
 
Engineering news on Phys.org
iflabs said:
Building a simple linear power supply for a project and need to spec out a transformer. I have no idea how they're built and used in the industry. I was instead handed a 120VAC input with a 24VAC output and 2A max step down transformer. I am content with it for the moment.

But I'm looking to make my power supply universal. The question is, are there step down transformers available that can handle 100-240VAC 50-60HZ inputs? Or is this feature exclusive to switching power supplies?

yes there are transformers available BUT they need to be manually switched from one voltage range to another. Maybe you have seen gear, particularly test equip for the international market, that has a voltage selector switch on the back ?

Basically, the primary side of the transformer has 2 windings on it, usually rated at ~ 110-120VAC. When switched in 110-120VAC mode just 1 winding is used, if 220-240VAC input is required, then the 2 windings are switched into series.

I have never seen an auto switching transformer system as described above.

In a switch mode PSU (SMPS) the stable output voltages are primarily determined by the feedback between the output and the input circuits. ie. as the input voltage rises, the DC output will also want to rise, but that will generate a higher error voltage in the feedback circuit back to the HV DC stages of the primary side.

remember in a SMPS the incoming AC voltage 120, 240 etc is rectified to DC and then switched at ~ 10kHz or more. I'm not totally up with how the feedback works but I suspect its a form of PWM to control the switching of the primary osc. changing its duty cycle will control the voltage generated in the primary winding of the transformer.

cheers
Dave
 
A transformer that can handle 240 volts in can also handle 120 volts. But then the 24 volt output would drop to 12 volts. You probably want a constant output voltage. But that will require a non-linear circuit to achieve.

If you are going to use a transformer with a range of inputs, you need to not only make sure it can handle the highest voltage, but make sure it can handle the lowest frequency. If it can handle 50 Hz, it can handle 60 Hz. But if it is a 60 Hz design, when used on 50 Hz the voltage limit for saturation goes down by the same amount. So a transformer that can handle 240 volts at 60 Hz can only handle 200 volts at 50 Hz. Likewise, a transformer that can handle 230 volts at 50 Hz can probably handle 277 volts at 60 Hz (provided all other aspects can deal with that).

A switched transformer with 2 windings should put the 2 windings in parallel when in the lower voltage mode. That would allow it to handle the higher current that needs to be drawn from the lower voltage to keep the same VA rating.

Switch mode power supplies can generally handle a wide voltage range and produce the same output in DC by changing the switching durations as needed to keep a nearly constant voltage on the DC side.
 
davenn said:
remember in a SMPS the incoming AC voltage 120, 240 etc is rectified to DC and then switched at ~ 10kHz or more. I'm not totally up with how the feedback works but I suspect its a form of PWM to control the switching of the primary osc. changing its duty cycle will control the voltage generated in the primary winding of the transformer.
I don't know if any actually do this, but they could use a pair of switchers in opposite directions as the rectification bridge. Just switch one way in the up cycle, and the other way in the down cycle. I did see a circuit design once where multi-way switching was done like this to convert directly between 50 Hz and 60 Hz in three phase (this being possible because three phase has a constant level of available power). I suspect variable speed motor drives can do even more interesting stuff. It's also how I envisioned designing an inverter to convert DC to AC (at any desired frequency), with the switch timing varying to create the sine wave.
 
...I don't know if any actually do this...

which part ? the rectification part or the feedback part ?

The rectification part is pretty standard amongst SMPS units.
As I said with the feed back I have only read a bit here and there and not totally conversant but PWM seems to be used in some designs.

It really a subject I would like to know a lot more about. I started TV servicing in the mid - late 1970's when SMPS supplies were starting to become the rage ... in New Zealand and Australia we have the Philips K9 range of TV's, AWA's, Thorn's are a few others. All with their own take on SMPS design.
The Philips K9 and KTV were amongst the easiest to work on... I remember well the days on using a 240V 100W lightglobe as a load for testing the 155VDC main rail from the supplies.
And although I had a good handle on repairing them, I never really got into the theory of operation too deeply :)

cheers
Dave
 
Did a little bit more reading on SMPS, complicated power electronics stuff which I haven't study too deeply in. Otherwise the small transformers they use is one of the neatest feature along with variable inputs. But it left me wondering, don't these use a chip for feedback control that requires power from elsewhere?

Also what's a proper and safe way to construct and test a power supply design? Can everything be hooked up to a breadboard?
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top