goulio
- 14
- 0
I need to find the eigenvalues and eigenvectors of a matrix of the form
<br /> \left ( \begin{array}{cc}<br /> X_1 & X_2 \\<br /> X_2 & X_1<br /> \end{array} \right )<br />
where the X_i's are themselves M \times M matrices of the form
<br /> X_i = x_i \left ( \begin{array}{cccc}<br /> 1 & 1 & \cdots & 1 \\<br /> 1 & 1 & \cdots & 1 \\<br /> \vdots & \vdots & \ddots & \vdots \\<br /> 1 & 1 & \cdots & 1 <br /> \end{array} \right )<br />
Is there any theroem that could help? Something like if you find the eigenvalues of the X_i's then the eigenvalues of the block-matrix are...
Thanks
<br /> \left ( \begin{array}{cc}<br /> X_1 & X_2 \\<br /> X_2 & X_1<br /> \end{array} \right )<br />
where the X_i's are themselves M \times M matrices of the form
<br /> X_i = x_i \left ( \begin{array}{cccc}<br /> 1 & 1 & \cdots & 1 \\<br /> 1 & 1 & \cdots & 1 \\<br /> \vdots & \vdots & \ddots & \vdots \\<br /> 1 & 1 & \cdots & 1 <br /> \end{array} \right )<br />
Is there any theroem that could help? Something like if you find the eigenvalues of the X_i's then the eigenvalues of the block-matrix are...
Thanks