Can All Functions Be Parameterized?

  • Thread starter Thread starter darkar
  • Start date Start date
  • Tags Tags
    Function
AI Thread Summary
Parameterizing functions of scalars and vectors can vary significantly based on the specific curve or surface involved. When dealing with level curves, one approach is to express one variable in terms of another, using it as a parameter. For example, the level curve defined by y - x² - 2x = 0 can be parameterized as r(t) = (t² + 2t, t). However, there is no universal method for parameterization, as different curves may require unique approaches, and some curves may not be smoothly parameterizable. Ultimately, while many functions can be parameterized, certain complex or discontinuous functions may present challenges in finding a suitable parameterization.
darkar
Messages
187
Reaction score
0
Is there a specific method to parameterised a function of scalar and vector?

I was reading through this website but then, can't understand how it read taht parameterised steps.

Any guide?

(http://www.math.umn.edu/~nykamp/m2374/readings/stokesex/index.html
under double check example)

Thanks
 
Mathematics news on Phys.org
I don't think there is a method that works in all cases. But when the curve is specified as a level curve f(x,y)=0, you can try to solve for y. In that case, just use x as the parameter.

Exemple: Consider the level curve C={(x,y): y-x²-2x=0. We can solve of y like so: y=x²+2x. In that case, the parametrized curve is r(t)=(t²+2t,t), t \in \mathbb{R}.

In other cases, if the relation between x and y is something familiar you can try to exploit this as illustrated in the following exemple:

Exemple: Consider the level curve C={(x,y): (x/a)²-(y/b)²=1}. This resembles the identity cosh²(t)-sinh²(t)=1. So set x(t)/a=cosh(t) and y(t)/b=sinh(t), i.e. let r(t)=(acosh(t),bsinh(t)) t \in \mathbb{R} parametrize the level curve.

N.B. You can convince yourself that this parametrization covers the whole curve because given any value of x, there is a corresponding value of t for which acosh(t)=x and similarly for y. [cosh(t) is surjective on the x-axis and sinh(t) is surjective on the y axis]. See http://en.wikipedia.org/wiki/Image:Sinh_cosh_tanh.svg
 
No wait, cosh(t) is not surjective on the real line, it only covers (1, infty). So r(t) would only cover part of C.
 
As quasar987 said, there is no one method of parameterizing a curve. In fact, there exist an infinite number of different parameterizations for any curve.

For the example given, because the path (From the origin, (0, 0, 0) along the z-axis to (0, 0 1), then along the quarter circle to (0, 1, 0), then along the y-axis to (0, 0, 0) again) is not "smooth" (there are corners at (0,0,0), (0, 1, 0) and (0, 0, 1)), you would break it into three pieces.

First the line from (0, 0, 0) to (0, 0, 1). At any point on that line, x=y= 0
An obvious parameterization is to use z itself as parameter: x= 0, y= 0, z= t, with 0\le t\le 1.
Second, the quarter circle from (0, 0, 1) to (0, 1, 0). At every point on that circle x= 0 and y2+ z2= 1. A "standard" parameterization for a circle is to use sine and cosine: x= 0, y= sin(t), z= cos(t). Then x= 0 always while y2+ z2= sin2(t)+ cos2(t)= 1 for all t. Of course, it is z= cos(t) and not y because when t= 0, z= cos(0)= 1 and y= sin(0)= 0 as required. When t= \pi/2, z= cos(\pi/2)= 0 and y= sin(\pi/2)= 1 so 0\le t\le \pi/2.

Finally, the line from (0, 1, 0) to (0, 0, 0). Obviously x= z= 0 at every point. We could use y itself as parameter: x= 0, y= t, z= 0 with t going from 1 to 0. Another possibility is x= 0, y= 1- t, z= 0 with t going from 0 to 1.
 
Oh rite, i see.
Thanks for helps!

Edit: oh, btw, is there any functions that can't be parameterized?
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top