YellowTaxi
- 196
- 0
Jeff Reid said:In some cases which forces are real or reactive get a bit fuzzy. Here is an example ... While circling, the air exerts a centripetal force on a glider, causing the glider to accelerate inwards, following a circular path. This coexists with the glder exerting a centrifugal force on the air, causing the air to accelerate outwards in a spiraling path. Here the glider's outwards reactive force coincides with the outward force the glider exerts onto the air, and the air's inwards reactive force coincides with the inwards force the air exerts onto the glider.
Exactly, centrifugal/centripetal is just action/reaction between 2 bodies. After all, it's not possible to have action/reaction with just one, - the 2 always pull or push on each other. Which is the action and which the reaction is just an argument of semantics.
Jeff Reid said:Similarly imagine a rocket in space void of gravitational effect, using it's thrust to follow a circular path. The spent fuel exerts a centripetal force on the rocket, causing the rocket to accelerate inwards, following a circular path. This coexists with the rocket exerting a centrifugal force on the spent fuel, causing the spent fuel to accelerate outwards in a spiraling path. Here the rocket's outwards reactive force coincides with the outward force the rocket exerts onto the spent fuel, and the spent fuel's inwards reactive force coincides with the inwards force the spent fuel exerts onto the rocket.
update - so which of the forces in these examples are "fictitious"?
both, it's all down to individual perception, ie which frame of reference you're using. And we could probably argue that all forces are fictitious if we follow Einstein's lead. And don't forget that Newton's first attempt at putting circular motion into a mathematical formulation involved the centrifugal not centripetal force.