For a given pressure in the CO2 tank acting on some area of fluid (Lets call then Ptank and Atank). We have F = PA = mdot*Vexit
mdot = rho*Aexit*Vexit
So
Ptank*Atank = rho*Aexit*Vexit^2
Vexit = sqrt (Ptank/rho*Atank/Aexit)
OK thanks great but we need to know more...
The thrust is simply the mass flow rate multiplied by the exit velocity
This needs to be equal to the sum of weight and drag forces.
Note that the Ptank is the GAUGE Pressure in the tank with respect to the ambient. rho is the density of water 1000g/L (I''d assume you working in this range of magnitude) If you building a 1000kg water rocket then let me know I want to see it j/k.
So anways the thrust will be
mdot*Vexit = totalmass(t) + Drag(v)
mass is a function of time. Most likely something of the form
M(t) = Mo - mdot*t (this is assuming the flow of water is constant)
For small speeds Drag increases linearly with velocity
It really is a function of the dynamic pressure which is a function of V^2.
Let not worry exactly what the drag is for now, because that requires knowledge of the shape of your rocket, we can just assume its goign to not be big.
Lets let the mass be 10 kg so its wieght is about 100N. Let's let the drag be about 20N.
This means at the heaviest case we need to produce about 120N of thrust
120 = rhoH20*Aexit*Vexit^2. Working in kilograms and meters we have
rho = 1000 kg/m^3
So 0.12 = Aexit*Vexit^2, but Vexit^2 is...
Ptank/rho*Atank/Aexit
So 0.12 = Ptank*Atank/rho. The pressure is a max to begin with and will drop slightly, so all that really matters using this simplified example is area between the CO2 tank and the water.
multplying by density gets us back to
120 = Ptank*Atank, however we know not all of the pressure in the tank will be directly converted into thrust so let's let the force need between these two maybe be 20% higher or about 144N
So now we have 144=Ptank*Atank. Ptank is some number you know and I dont, remember its the gauge pressure between the atmosphere and the tank, not the absolute pressure in the tank. So that's how we then find Atank.
To find the area of the throat we need to ask ourselves how much water do we have and how long do we want to "burn" for. More water is more burn time, however due to friction we cannot make the hole infinitely small and have water jetting out at lightspeed, nor can we have a hole so big that all the water makes a giant water bomb upon launch. Well we know
mdot = rhoH20*Aexit*Vexit
We determined Atank above, so now the exit Velocity is strictly a function of exit area only. This is where the open ended part of the problem comes in. Let's choose a mass of water of 10kg, and let's let the water exit at a desired rate of 1.5 kg/s. This is a burn of about 6 seconds which isn't too bad for a small rocket. So we have
1.5 = rhoH20*Aexit*Vexit
Vexit = sqrt (Ptank/rho*Atank/Aexit)
Ahhhh look now...
1.5 = rhoH20*Aexit*sqrt(Ptank/rhoH20*Atank/Aexit)
everything is a function of
the density of water...known
Ptank...known (use a gauge if its not given)
Atank...solved for using F = dP/dt
Aexit...only unknown.
So basically what I did here is that I knew my mass of water to start with and I wanted an appropriate burn time, for this I can determine the mass flow rate by assuming a CONSTANT flow rate (this will never happen, the world isn't that nice) Then I can determine Aexit, knowning all my areas now and the previous junk, this will give me my exit Velocity as well.
So we know everything. Just by looking at this I'd guess an exit area mybe 3-4cm in diameter would be appropriate. Also You will probably have a large Atank. When transitioning to these areas, do it gradually, likea venturi. Just look up what a venturi tube is on google or something if you don't know what that is, kinda like an hourglass. Make inner surfaces as smooth and continuous as possible, this will keep frictional losses at a minimum. Also, flar your nozzle at the end, This slightly reduce the ambient pressure on the boundary of the exit, this effectively increases the gauge pressure in the tank by a small amount. (That means u can make your rocket more slender reducing the drag).
Hope this helps took me abotu an hour or so to write.