Can Complex Numbers in Polar Format Be Equated Like Real Numbers?

AI Thread Summary
Complex numbers in polar format can be equated under certain conditions, specifically when their magnitudes and angles are considered. For two complex numbers z1 and z2 to be equal, their magnitudes must be equal, and their angles must differ by an integer multiple of 2π. This means that while A = C is necessary, B and D can vary as long as they meet this condition. When dealing with complex components in polar form, such as z3 and z4, equality does not imply that the individual components are equal due to the higher number of unknowns compared to equations. Therefore, additional equations are required to establish a unique solution in such cases.
KrayzBlu
Messages
11
Reaction score
0
Hi,

We know that if we have two complex numbers in polar format (i.e., magnitude and exponential), that for two complex vectors

z1 = A*exp(iB)
z2 = C*exp(iD)

If z1 and z2 are equal, then A = C and B = D. However, this is assuming these values are all real. What if they are complex? I.e. can we say if we have two complex numbers

z3 = (a+ib)*exp(c+id)
z4 = (e+if)*exp(g+ih)

If z3 and z4 are equal, can we say that (a+ib) = (e+if) and (c+id) = (g+ih)?

Thanks
 
Mathematics news on Phys.org
KrayzBlu said:
Hi,

We know that if we have two complex numbers in polar format (i.e., magnitude and exponential), that for two complex vectors

z1 = A*exp(iB)
z2 = C*exp(iD)

If z1 and z2 are equal, then A = C and B = D.

Not quite true. B and D must differ by an integer multiple of 2pi. You'll need to take that into account when working out the rest of this.
 
SteveL27 said:
Not quite true. B and D must differ by an integer multiple of 2pi. You'll need to take that into account when working out the rest of this.

Thanks for pointing this out, SteveL27, I should have said B = D +/- n*2*π, where n is any integer.
 
KrayzBlu said:
If z1 and z2 are equal, then A = C and B = D. However, this is assuming these values are all real.

You can have A = -C, if B and D are different by an odd multiple of π

z3 = (a+ib)*exp(c+id)
z4 = (e+if)*exp(g+ih)
If z3 and z4 are equal, can we say that (a+ib) = (e+if) and (c+id) = (g+ih)?
It should be easy to see why that is false. For example take
a = 1, b = c = d = 0, e = 0, f = 1, and find g and h to make z3 = z4.

If you convert z3 = x3 + i y3 and z3 = x4 + i y4, you only have 2 equations (x3 = x4 and y3 = y4) but 8 unknowns (a through h). You need 6 more equations before you can hope there is a unique solution.
 
  • Like
Likes 1 person
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top