Can Gravity Be Understood as a Gauge Theory Through Rovelli's LQG Approach?

Klaus_Hoffmann
Messages
85
Reaction score
1
GR as a Gauge theory ??

don't know if this is true or not, but i have been reading books by ROvelli (LQG) or 'Gauge theories' the question is could we study Gravity as the set of functions A_{\mu}^{I}(x)

Then we write the Einstein Lagrangian (or similar) as:

\mathcal L = F_{ab}^{I}F^{I}_{ab} (sum over I=0,1,2,3)

F_{ab}= \partial _{a}A^{I}_{b}-\partial _{b}A^{I}_{a}-\Gamma_{jk}^{i}A_{j}^{I}(x) A_{k}^{I}(x)

I think Rovellli in his LQG theory used this representation... then (\partial_{0}A_{\mu}^{I} is the Kinetic part of Lagrangian and

dA_{\mu}^{I} (d- exterior derivative) represents the potential.

then how would it read the Einstein Field equation and the Riemann or similar tensors ??
 
Physics news on Phys.org
Yes, you can formulate gravity in that way. However, then the Lagrangian is not quadratic in F, but linear in F. In addition, you have one additional independent field - the tetrad (corresponding to the metric tensor itself), which does not have an analog in Yang-Mills theories. Having two independent fields, you obtain two set of equations of motion. One is the Einstein equation, while the other is a relation between the connection A and the metric derivatives. In the absence of matter, this relation is the same as in GR. In the case of matter with spin, the connection gets additional terms, describing geometry with torsion. This is the so-called Einstein-Cartan theory of gravity.
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy

Similar threads

Back
Top