KayDee01
- 11
- 0
Homework Statement
f(x,y)=6a^{-5}xy^{2} 0≤x≤a and 0≤y≤a, 0 elsewhere
Show that \overline{xy}=\overline{x}.\overline{y}
Homework Equations
\overline{x}=\int^{∞}_{-∞}{x.f(x)dx}
The Attempt at a Solution
\overline{x}=\int^{∞}_{-∞}{x.f(x)dx}
=\int^{a}_{0}{x.6a^{-5}xy^{2}dx}
=6a^{-5}\int^{a}_{0}{x^{2}y^{2}dx}
=6a^{-5}\frac{1}{3}a^{3}y^{2}
=2a^{-2}y^{2}
Following the same process I get \overline{y}=\frac{3}{2}a^{-1}x^{2}
But when it comes to \overline{xy} I'm not really sure how to approach it
Last edited: