Can Integration Diverge as A Approaches Pi-0? An Exploration of the Problem

  • Thread starter Thread starter wyzhao
  • Start date Start date
  • Tags Tags
    Integration
wyzhao
Messages
1
Reaction score
0
Follow the link and see the question.
http://pdjh03.mofile.com/p/1/2007/11/4/3X/3XJR2KFOJT_104_300_260.jpg
(Prove the integration divergese as A gose to Pi-0)
 
Last edited by a moderator:
Physics news on Phys.org
we don't do ppl's hw! show some work and we'll help you out.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top