Dr. Walter Lewin makes an addition to the Kirchhoff Voltage Law (KVL)=see e.g.
https://www.physicsforums.com/insights/a-new-interpretation-of-dr-walter-lewins-paradox/ so that the requirement that ## \frac{dB}{dt}=0 ## is not necessary. ## \\ ## However, the assumption in KVL that the current is the same everywhere in the circuit requires that wavelengths involved are large compared to the size of the circuit. Kirchhoff's voltage law does not allow for a current of the form ## i(x,t)=i_o \cos(kx-\omega t) ## that is different for different locations ## x ## in the circuit. With Kirchhoff, we can have ## i=i_o \cos(\omega t) ## , but that current is the same everywhere in the circuit, i.e. we can have a branch, etc, but what goes into the junction comes out of the junction, etc.## \\ ## See also post 52 of
https://www.physicsforums.com/threa...asure-a-voltage-across-inductor.880100/page-3 for Dr. Walter Lewin's video. IMO, Dr. Walter Lewin makes an important addition to the KVL theory with the paradox that he presents for the case where ## \frac{dB}{dt} \neq 0 ##. (It would be helpful to watch this video before reading the more in-depth discussion of it in the "link" of the first paragraph). ## \\ ## Edit: Additional item: With KVL, there is no provision for a circuit to be able to radiate power. When power is radiated, KVL will not compute the power correctly. If there is significant power radiated, the results that KVL gets must thereby be an approximation.
@vanhees71 Please confirm these last statements, but I believe they are correct.