Ok,
This is the way described through my math teachers, although it is not exactly the method I use now.
x^2+2x-3\geq
First, solve the problem as if it were a normal equality.
x^2+2x-3=0
and you get
x_1=1 x_2=-3
Now, write down all sets of numbers between those.
(-\infty,-3] <br />
[-3,1]<br />
[1,\infty)
Now set up a table like so
...set...|||||||||||sample point|||||||||||(x-1)|||||||||||(x+3)|||||||||||+ or - ?
(-\infty,-3]...[/color]|||||||||||...-4...|||||||||||..-..|||||||||||..-..|||||||||||...+...
[-3,1]...[/color]|||||||||||...0...|||||||||||..-..|||||||||||..+..|||||||||||...-...
[1,\infty)...[/color]|||||||||||...2...|||||||||||..+..|||||||||||..+..|||||||||||...+...
Now, since it was greater than or equal to, you know it has to be greater than zero, therefore the positive ones are the ones you want.
Therefore, the two sets (-\infty,-3] and [1,\infty) work.Now, you know that your answer is (-\infty,-3]\cup[1,\infty)now, try to solve this one on your own
x^2-5x+6\geq0