Can Singularities Be Modeled as a Conventional Field?

Loren Booda
Messages
3,108
Reaction score
4
Is it possible to have a field f([pard](x)) - fractal or otherwise - where [pard](x) are discrete Dirac delta functions, and f interrelates the various magnitudes of those singularities as a conventional field would for points over a continuum?
 
Mathematics news on Phys.org
I think the phrase "various magnitudes of all the singularities" is a contradiction in terms. a δ doesn't have a value until it's integrated, as in ∫f(x)δ(x-a)dx = f(a).
 
selfAdjoint,

Couldn't local Dirac singularities in my proposed field represent also various magnitudes obeying their point-by-point (distribution) normalization through overall integration?
 
Loren, go back and look at the integral I posted, notice that f(x) in there. It could be anything. What the Dirac δ does is to pick out a particular value of any function that you integrate. Dirac modeled it on the finite case of a vector like (0,1,0). If you inner multiply that by any arbitrary vector (a,b,c) you get
(a,b,c)(0,1,0) = 0*a + 1*b + 0*c = b
(so it picks out the second component, and if you used a 1 in a different place you would pick out a different component. Now in QM math the integral of the product of two "functions" is an inner product in the algebra of those functions, so δ(x-a) in the integral picks out the "a-value component" of the function.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top