miglo
- 97
- 0
Homework Statement
using mathematical induction, show that
d^n/dx^n(lnx)= (-1)^(n-1)*((n-1)!/x^n)
Homework Equations
The Attempt at a Solution
basis step:
for n=1 we get d/dx(lnx)=(-1)^0*((0)!/x^1)
which gives d/dx(lnx)=1/x
inductive step:
assuming it holds for all n, d^n/dx^n=(-1)^(n-1)*((n-1)!/x^n)
for n+1, d^(n+1)/dx^(n+1)=(-1)^n*(n!/x^(n+1))
d/dx[d^n/dx^n(lnx)]=d/dx((-1)^(n-1)*((n-1)!/x^n))
=-((n(n-1)!x^(n-1))/x^(2n))(-1)^(n-1)
=(-1)^n*(n!*x^(-n-1))
=(-1)^n*(n!/x^(n+1)
any help would be greatly appreciated, and sorry if its a bit hard to read, hopefully ill be posting using latex soon