Can someone please explain the steps for me:

  • Thread starter Thread starter sony
  • Start date Start date
  • Tags Tags
    Explain
sony
Messages
102
Reaction score
0
How can you go from:

(1+x)^(k-1) / (1+x)^(2k)
to:
1/ (1+x)^(k+1)

?

Thanks!
 
Physics news on Phys.org
You can use:
\frac{a ^ \alpha}{a ^ \beta} = a ^ {\alpha - \beta}
And a ^ {- \alpha} = a ^ {0 - \alpha} = \frac{a ^ 0}{a ^ \alpha} = \frac{1}{a ^ \alpha} to solve the problem. So:
\frac{(1 + x) ^ {k - 1}}{(1 + x) ^ {2k}} = (1 + x) ^ {k - 1 - 2k} = ...
Can you go from here?
Viet Dao,
 
= (1+x)^(-k-1)
=1 / (1+x)^(k+1)

Right?
 
Yup. That's correct. :smile:
Viet Dao,
 
Ok, thanks :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top