# Can someone solve this complex number equation for x and y

If x and y are real quantities what are the solutions for x and y

(ix)(1+iy)=(3x+i4)/(x+3y)

I have tried grouping the equation into two equal complex numbers but have failed to find a solution which isolates x and y from the two quite long polynomial equations.

Does anybody know how to do this.

Related Engineering and Comp Sci Homework Help News on Phys.org
vela
Staff Emeritus
Homework Helper
Your approach sounds fine. Show us what you did so far.

(xi)/(1 + yi) = (3x + 4i)/(x + 3y)

First rationalized the left hand fraction.

(xi)/(1 + yi) * (1 - yi)/(1 - yi) = (xi -yxi^2)/(1 + y^2)

= (yx + xi)/(1 + y^2)
Grouped real and imaginary terms

[ yx/(1 + y^2) ] + [ x/(1 + y^2) ]i

Then grouped real and imaginary terms on the right hand fraction

(3x + 4i)/(x + 3y) = [ 3x/(x + 3y) ] + [ 4/(x + 3y) ]i

Set the two complex numbers equal

[ yx/(1 + y^2) ] + [ x/(1 +y^2) ]i = [ 3x/(x + 3y) ] + [ 4/(x +3y) ]i

Take the two imaginary parts to be identical
Take the two real parts to be identical

[ yx/(1 + y^2) ] = [ 3x/(x +3y) ]
[ x/(1 + y^2) ] = [ 4/(x + 3y) ]

Expressing both fractions as polynomials

(yx)(x + 3y) = (3x)(1 + y^2)
(x)(x + 3y) = (4)(1 + y^2)

Then multiplying out both equations in x and y

1. yx^2 + 3y^2x = 3x + 3xy^2

2. x^2 + 3yx = 4 +4y^2

Grouping terms on one side to form two equations that equal zero.

1. yx^2 + 3y^2x - 3x - 3xy^2 = 0

2. x^2 +3yx - 4 - 4y^2 = 0

Now trying to find some way of dealing with these terms.

Last edited by a moderator:
I like Serena
Homework Helper
Hmm, let's just cross multiply and simplify:

(xi)/(1 + yi) = (3x + 4i)/(x + 3y)
(xi)(x + 3y) = (3x + 4i)(1 + yi)
x²i + 3xyi = 3x + 4i + 3xyi - 4y
x²i = 3x + 4i - 4y
(4y-3x) + (x² - 4)i = 0

That doesn't look so bad does it?
I suspect you made a mistake somewhere, but I haven't figured out where yet.

vela
Staff Emeritus
Homework Helper
Expressing both fractions as polynomials

(yx)(x + 3y) = (3x)(1 + y^2)
(x)(x + 3y) = (4)(1 + y^2)
Note that you can write these two equations as
\begin{align*}
\frac{x(x+3y)}{1+y^2} &= \frac{3x}{y} \\
\frac{x(x+3y)}{1+y^2} &= 4
\end{align*}So you have y=(3/4)x. You can plug use that to eliminate y in one of the equations and solve for x.

Or you can do it the way ILS did it.