Can Spacelike and Timelike Points Undergo the Same Transformations?

Click For Summary
The discussion centers on the transformation properties of spacelike and timelike points in the context of special relativity. It is noted that spacelike points can undergo transformations that allow for instantaneous sign changes, enabling velocities greater than light. In contrast, timelike points cannot achieve such transformations due to the constraints of causality, as they require simultaneous evaluations. The conversation explores the mathematical implications of these transformations, particularly through Lorentz transformations and rotations. Ultimately, the interpretation highlights the fundamental differences in how spacelike and timelike vectors can be manipulated within the framework of relativity.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
"When (x−y)2<0 we can perform a Lorentz transformation taking (x−y)→−(x−y). Note that if (x−y)2>0 there is no continuous Lorentz transformation that takes (x−y)→−(x−y)"
Relevant Equations
The metric is majority -
I want to understand bettew what this statement says. Maybe later we could try to put it mathematically, but for while i want to know if my interpretation is right.

When we lie outside the light cone, the physics regarding the limit of the velocity is break, and technically we could go faster than light. So, if we want, we could perorm a transformation in x and y such that they got alterned sign instantaneally in a reference frame. So we can have a transformation that leads (x−y)→−(x−y) at the same time if the points are spacelike.

But, if they are timelike, we couldn't go so fast (it need to be avaliated at the same time), and we can't find a transformation that change the signs.

Is this the right interpretation? Let me know any error
 
Physics news on Phys.org
There is a discussion of this here:

https://physics.stackexchange.com/q...tum-field-theory-from-improper-lorentz-transf

The idea is that you want to perform rotations and Lorentz transformations to turn the vector

##(A^x,A^y,A^z,A^t)##

into

##(- A^x, - A^y, -A^z, -A^t)##
So the way you can do this is through a sequence of transformations:
  1. Rotate about the z-axis to make ##A^y \rightarrow 0##.
  2. Rotate about the y-axis to make ##A^z \rightarrow 0##.
  3. Perform a boost (a regular Lorentz transformation) to make ##A^t \rightarrow 0##.
  4. Perform a rotation about the z-axis to make ##A^x \rightarrow - A^x##
  5. Undo the boost in 3 to turn ##A^t## into the negative of its original value.
  6. Undo the rotation in 2 to turn ##A^z## into the negative of its original value.
  7. Undo the rotation in 1 to turn ##A^y## into the negative of its original value.
It's sort of like solving the Rubiks cube. You perform a bunch of moves, then you switch two pieces, then you undo those moves to get back to where you started, but with two pieces switched.

The only step that is impossible for timeline vectors is step 3. If ##(A^x)^2 + (A^y)^2 + (A^z)^2 \lt (A^t)^2##, then there is no Lorentz transformation that can make ##A^t \rightarrow 0##.
 
  • Like
Likes LCSphysicist
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
Replies
16
Views
1K
Replies
40
Views
5K
  • · Replies 16 ·
Replies
16
Views
3K
Replies
4
Views
807