Can the Indefinite Integral of sqrt(2x+1)dx be Expressed as 1/3(2x+1)^3/2 + C?

  • Thread starter Thread starter sapiental
  • Start date Start date
  • Tags Tags
    Integral
sapiental
Messages
110
Reaction score
0
evaluate the indefinite integral sqrt(2x+1)dx

I let u^2 = 2x+1

then

indefinite integral u^2du

1/3u^3 + C

1/3(sqrt(2x+1))^3 + C is my finals answer

can this also be written like this 1/3(2x+1)^3/2 + C?


Thanks
 
Physics news on Phys.org
yes you are correct
 
Your answer is right, but I have no idea what you just did. Would you mind explaining it to me?
 
sure,

I skipped a few steps in my previous post.

evaluate the indefinite integral sqrt(2x+1)dx

u = sqrt(2x+1)

du = dx/sqrt(2x+1)

sqrt(2x+1)du = dx

or

udu = dx

rewriting the integral

indefinite integral u x udu

= indefinite integral u^2du

then just take antiderivative of u^2 and substitute sqrt(2x+1) back into it
 
oooh, I see now, thx!
 
Probably Quasar987 was used the substitution u= 2x+1 which gives the same answer.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top