Can the Poincare Conjecture Simplify 3D Objects for Mathematical Calculations?

MarekS
Messages
33
Reaction score
0
After reading the article on Poincare's conjecture in the Economist, I became curious about simplified 3-dimensional objects.

Excerpt:

To understand the Poincaré conjecture, start by thinking of any object existing in a three-dimensional world. Although it is usual to think of the object as three-dimensional, mathematicians consider only the surface of these objects—which are two-dimensional. All objects in a three-dimensional world can be simplified by smoothing out their shape to look like either a two-dimensional sphere (otherwise known as a circle) or a two-dimensional torus with however many holes necessary. To mathematicians, a chair is equivalent to an apple; a mug—at least, one with a handle—is like a doughnut.

Let's take a cube and simplify it into a circle. Could we then use equations ment for circles for the simplified shape, ie calculate the cube's surface area using S=pii*radius²?

How would the math look like for such calculations?

MarekS
 
Physics news on Phys.org
Whilst you could possibly work out how areas change under certain transformations, this is not what the poincare conjecture (or topology) is about. You're just doing some complicated sums (and undoubtedly integrals) to work out something quite trivial.
 
Topological onjects don't have area (hypervolume) in any well-defined sense. You can distort them in ways that change their volume without changing their topoogical properties.
 
but the idea of peremans proof, or hamiltons idea, was to impose a metric on the manifold, and show how to deforkm the metric until it became flat. manifolds with a metric do have "area" or volume, of course
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top