Can the Taylor Series Method Accurately Compute Integrals with 10-3 Precision?

vucollegeguy
Messages
28
Reaction score
0
Use taylor series method to compute the integral from 1 to 2 of [sin(x2)] / (x2) with 10-3 precision.
 
Physics news on Phys.org
The template is there for a reason. Please use it. Do you at least know how to expand a taylor series?
 
Start with the Taylor's series for sin(x).
 
Solved already.
Thank you all for help.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top