Can the Thickness of a 3D Spiral Curve be Defined Parametrically?

sukharef
Messages
54
Reaction score
0
Hello!
There is a parametric way of defining a spiral curve:
z = a*t;
x = r1*cos(w*t)
y = r2*sin(w*t).
Is there a way to define the thickness of spiral?
 
Mathematics news on Phys.org
Wow, that's an interesting idea. If there is, the thickness is an inequality. I don't know about any 3d parametric graph generators that handle inequality though, so it'd be hard to play with.

Think about a 2d parametric system, defining a circle. Is there a way to give the circle 'width', such that it resembles a flat torus? Ah, in this case what you need is two parametric curves, and then define another system that lies between the earlier curves (Although, I don't think this is what you wanted).

width.png

I defined this system implicitly, not parametrically, but only due to how my graphing software works (Winplot)
$$
x^2 + y^2 \leq (1-A/2)^2
$$
$$
x^2 + y^2 \geq (1+A/2)^2
$$

Unfortunately, I'm not that experienced with 3d parametric equations. I know, though, that a spiral curve with thickness... i.e. a spiral 'cord' is possible to be represented parametrically if the torus is possible. But, unfortunately, I've been having trouble getting the torus to work on Winplot.
 
Last edited:
This seems like a reasonable attempt:

z=a*t + thickness*cos(u)
x=(r+thickness*cos(u))*cos(w*t)
y=(r+thickness*cos(u))*sin(w*t)

For a surface you'll need two parameters u and t of course.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top