Saw
Gold Member
- 631
- 18
@robphy please let me come back for a moment to my prior question.
I had specifically asked:
Do you mean that the answer is "somehow both", in the sense that your "unit tangent vector" (spatial velocity in Galilean relativity, 4-velocity in SR) is the unit vector of the spacetime displacement vector of the wristwatch?
I had specifically asked:
Your comments are:Saw said:where you place the time basis vector:
- My first interpretation is that you equate it with the "spacetime displacement vector" A-B (Bob) or A-C (Alice), which is relative: in Galilean case, only due to relative distance; in Minkowskian case, in more respects.
- Then you add the concept of "velocity", which is the tangent of the "angle" between the two displacements To be noted: this velocity, which is (...) the relative velocity between the two watches and between the frames, is invariant, both in the Galilean and in the Minkowskian geometries (for different reasons in each case), so it is a different thing.
(...) And then one has to decide what to call the "time basis vector", whether one thing or the other.
robphy said:the unit tangent vectors to various worldlines can and shouldstill function as [possibly viewed by some as redundant and useless] time-basis vectors.(...)
In special relativity, one can interpret that unit tangent vector as the so-called 4-velocity (geometrically, a dimensionless quantity [since it's a unit-vector], despite its name and despite its historical introduction),
where the ratio of its sides [in (1+1)-spacetime] is the dimensionless version of the more-familiar "spatial velocity" v appearing in the boost.
Do you mean that the answer is "somehow both", in the sense that your "unit tangent vector" (spatial velocity in Galilean relativity, 4-velocity in SR) is the unit vector of the spacetime displacement vector of the wristwatch?