Can two functions have the same frequency domain representation?

AI Thread Summary
Two functions can indeed have the same frequency domain representation, as demonstrated by the functions 1/(j.pi.f) and signum(t) = u(t) - u(-t). The relationship between these functions is clarified by the equation 2u(t) - 1 = signum(t). This indicates that both functions represent the same signal in the frequency domain despite their different forms in the time domain. Understanding this concept is crucial for analyzing signals in various applications. The discussion effectively highlights the equivalence of these functions in terms of their frequency domain characteristics.
sanjaysan
Messages
11
Reaction score
0
Hi,

I stumbled upon the following two functions which have the same freq domain representation,
1/(j.pi.f)

1.signum(t) = u(t) - u(-t)

2. 2u(t)

what is the reasoning behind them having the same f domain representation?
 
Mathematics news on Phys.org
well
2u(t)-1=signum(t)
 
thanks,that answers my question:)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top