There are parts of the H-R diagram where we find lots of variable stars. One of these is called the instability strip, which runs from upper right (luminous and cool) to lower left (faint and hot) in the H-R diagram. When a star lies within the instability strip, it may begin to pulsate. In all stars, certain layers within the star can become more opaque to radiation if they become hotter or cooler. When this happens, energy from inside the star can become trapped in that layer, increasing its temperature and pressure. If this layer is located at just the right depth within a star, the layer can act like a piston that drives the outer layers of the star up and down in a periodic fashion, making the star pulsate. We now know that only stars within the instability strip have this layer at just the right depth. We also know based on stellar modeling that stars can lie within this strip at certain parts of their lives depending upon how massive they are. Stars more than a few times the mass of the Sun cross the instability strip after the main sequence. These are the Cepheid variables, named after the class prototype delta Cephei. One of the very important things about Cepheids is that the time it takes them to complete one pulsation cycle (the period) is proportional to the luminosity or absolute brightness of the star. If we can measure the period of the star, then we know its luminosity. This is known as the period-luminosity or P-L relation, and also by the name Leavitt Law, after its discoverer Henrietta Swan Leavitt.
. . . .