Here is a sketch of my argument that a large rotating object, such as the Earth, is going to be a stronger source of the gravitomagnetic field than a smaller, lab-created object.
The significance of this is that it's very hard to test for the existence of the gravitomagnetic filed of the Earth (though, as has been mentioned, it has been done) - thus, trying to do it in a pure lab envirnoment will be more difficult and probably impossible.
To start with, we need to know the basics dimensional dependency of the gravitomagnetic field. Neglecting all the various numerical factors, we find from the examples in Wiki that at the surface of a spherical body of radius R, the gravitomagnetic field strength will be proportional to
$$B_G \propto \frac{G}{c^2} \frac{m}{R} \, \omega\propto \frac{G}{c^2} \rho \, R^2 \, \omega \propto \frac{G}{c^2} \, \rho \, V^2 / \omega$$
here G is the gravitational constant and c is the speed of light - not strictly necessary to include, as they are constants, but they make the units sensible. R is the radius of the sphere, ##\omega## is it's rate of rotation, and V = ##r \omega## is the surface velocity of the sphere.
The significance of using V is that for any given material, a hoop of that material held together only by it's own strength (and not gravity) has a maximum tangential velocity before it will fail under stress. Gravity becomes important for larger objects, but for lab scale objects, this characteristic velocity is what's useful. While we are using a sphere and not a hoop, I think the failure criterion for a rotating sphere would be similar, though it would certainly be better to do a more thourough analysis.
The source of the observation about the importance of V is from the wiki page on space tethers,
https://en.wikipedia.org/w/index.ph...ldid=953929239#Properties_of_useful_materials
wiki said:
Hypersonic skyhook equations use the material's "specific velocity" which is equal to the maximum tangential velocity a spinning hoop can attain without breaking:
From the same article, we can see that the maximum known theoretical characteristic velocity would be for single walled carbon walled nanotubes, of about 5 km/sec, with commercially available materials (single walled carbon nanotubes are not yet commerically available in usable form AFAIK) being as high as 2km/sec.
So, where does the Earth fit on this scale? The velocity at the surface of the Earth is small, so V = .5 km/sec, about 1/10 of the maximum value of V we can get in a lab. So, potentailly, the lab could be better based solely on V. However, the field stregnth is proportioanl to ##V^2 / \omega##, and ##\omega## is very small for the Earth, making it the better candidate. Basically, the fact that the field strength is inversely proportional to ##\omega## tells us that larger structures, even though they rotate at a slower angular velocity ##\omega## will produce a larger gravitomagnetic field than small, faster rotating structures.
Since the Earth is already here, it's an ideal candidate for the source of the field. Perhaps another astronomical object would be even better, but the Earth is convenient because it's so nearby.
The remaining issue is how to detect the field. Measuring the torque directly would require bearings that can hold the axis of rotation stable with unreasonable accuarcy levels, and have a significant potential for introducing errors. So observing the precession directly, rather than trying to hold the direction stable and measure the force, seems far preferable. The question remains as to why an orbital approach is the best approach, rather than some surface mounted experiment. My thoughts on this are that eliminating effects due to Thomas precession ,
https://en.wikipedia.org/wiki/Thomas_precession, was the motivation for having the measuring instrument be in free fall, which implies an orbital experiment as opposed to a surface based experiment.
So in conclusion, larger is better as far as generating a gravitomagnetic field, and there isn't any obvious choice for a better detection scheme of said field than the GP-B satelite system - which was up to the job, but just barely.