Can You Simplify Integrals by Separating Radicals?

Cacophony
Messages
41
Reaction score
0

Homework Statement


for the following integrals, am I allowed to break them up like so:

1. ∫(1)/(sqrt(16-9x²)³) dx

= ∫(1)/(√16)³ · ∫(1)/(√-9x²)³ dx

2. ∫(x²)/(sqrt(x²-9)) dx

= ∫(x²)/(√x²) · ∫(x²)/(√-9) dx

3. ∫(1)/(x²(sqrt(a²+x²))) dx

= ∫(1)/(x²) · ∫(1)/(√a²) · ∫(1)/(√x²) dx

? ? ?


Homework Equations


none


The Attempt at a Solution


I need to know if I'm allowed to break them up like this before I start attempting a solution
 
Physics news on Phys.org
Is this what you are writing for #1?
\int \frac{1}{\left( \sqrt{16-9x^2}\right)^3} dx
=\int \frac{1}{\left( \sqrt{16}\right)^3} dx \cdot \int \frac{1}{\left( \sqrt{-9x^2}\right)^3} dx
Yikes. No, you cannot do that!

\sqrt{a - b} \ne \sqrt{a} \cdot \sqrt{-b}
Better review the properties of radicals.
 
Ok, guess i'll try something else. Thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top