Can you Simplify the Polynomial 1+4t+4t^2?

  • Thread starter Thread starter afcwestwarrior
  • Start date Start date
afcwestwarrior
Messages
453
Reaction score
0
1+ 4t + 4t^2

into

((1/4) + t + t^2) * 4
 
Physics news on Phys.org
Yes, the two expressions are equal, but all you've done is take a factor of 4 out of all three terms. The expression you started with is a perfect square trinomial, which means it can be factored into something of the form (a + b)^2.
 
Oh really. Thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top