Trail_Builder
- 148
- 0
hi
i'm confused at to how my textbook has done the following cancelling :S. hope you can clear things up for me :D
thnx
context: I am looking at complex numbers and De Moivre's Theorem and its consequences Ill use \oslash as the "arguement".
1. z_{1}z_{2} = r_{1}r_{2}(cos\oslash_{1}cos\oslash_{2} - sin\oslash_{1}sin\oslash_{2} + i(cos\oslash_{1}sin\oslash_{2} + sin\oslash_{1}cos\oslash_{2}))
which then cancels to
z_{1}z_{2} = r_{1}r_{2}(cos(\oslash_{1} + \oslash_{2}) + isin(\oslash_{1} + \oslash_{2}))
I see how the cos(\oslash_{1} + \oslash_{2}) gets there, but not sure what's going on with the rest :S.
2. \frac{1}{z} = \frac{1}{r}*\frac{cos\oslash-isin\oslash}{(cos\oslash+isin\oslash)(cos\oslash-isin\oslash)}
cancels to
\frac{1}{z} = \frac{1}{r}*(cos\oslash-isin\oslash)
have no idea what's going on there lol.
hope you can help :D
i'm confused at to how my textbook has done the following cancelling :S. hope you can clear things up for me :D
thnx
context: I am looking at complex numbers and De Moivre's Theorem and its consequences Ill use \oslash as the "arguement".
1. z_{1}z_{2} = r_{1}r_{2}(cos\oslash_{1}cos\oslash_{2} - sin\oslash_{1}sin\oslash_{2} + i(cos\oslash_{1}sin\oslash_{2} + sin\oslash_{1}cos\oslash_{2}))
which then cancels to
z_{1}z_{2} = r_{1}r_{2}(cos(\oslash_{1} + \oslash_{2}) + isin(\oslash_{1} + \oslash_{2}))
I see how the cos(\oslash_{1} + \oslash_{2}) gets there, but not sure what's going on with the rest :S.
2. \frac{1}{z} = \frac{1}{r}*\frac{cos\oslash-isin\oslash}{(cos\oslash+isin\oslash)(cos\oslash-isin\oslash)}
cancels to
\frac{1}{z} = \frac{1}{r}*(cos\oslash-isin\oslash)
have no idea what's going on there lol.
hope you can help :D