A Canonical quantization of scalar fields

Higgsy
Messages
18
Reaction score
0
In the srednicki notes he goes from

$$H = \int d^{3}x a^{\dagger}(x)\left( \frac{- \nabla^{2}}{2m}\right) a(x) $$ to
$$H = \int d^{3}p\frac{1}{2m}P^{2}\tilde{a}^{\dagger}(p)\tilde{a}(p) $$

Where $$\tilde{a}(p) = \int \frac{d^{3}x}{(2\pi)^{\frac{3}{2}}}e^{-ipx}a(x)$$

Is this as simple as substituting or isn't there a commutator to get to
$$H = \int d^{3}p\frac{1}{2m}P^{2}\tilde{a}^{\dagger}(p)\tilde{a}(p)$$ ?

Do $$e^{ipx}$$ and $$P^{2}$$ commute? What about $$\nabla$$ and $$ a(x)$$?

This is really bugging me any help would be greatly appreciated!
 
Physics news on Phys.org
This is obviously non-relativistic QFT. Then the scalar field (quantized Schrödinger field) in the Heisenberg picture has a mode decomposition
$$\hat{\psi}(t,\vec{x})=\int_{\mathbb{R}^3} \frac{\mathrm{d}^3 \vec{p}}{(2 \pi)^{3/2}} \exp[-\mathrm{i} (\omega_{\vec{p}}t-\vec{x} \cdot \vec{p})] \hat{a}(\vec{p}), \quad \omega_{\vec{p}}=\frac{\vec{p}^2}{2m}.$$
The free Hamiltonian is indeed given by
$$\hat{H}=\int_{\mathbb{R}^3} \mathrm{d}^3 \vec{x} \hat{\psi}^{\dagger}(t,\vec{x}) \left (-\frac{\Delta}{2m} \right ) \hat{\psi}(t,\vec{x}).$$
Now you can plug in the mode decomposition for ##\hat{\psi}(t,\vec{x})##. After some simple but lengthy manipulations, using
$$\int_{\mathbb{R}} \mathrm{d}^3 \vec{x} \exp(\mathrm{i} \vec{p} \vec{x})=(2 \pi)^3 \delta^{(3)}(\vec{p})$$
you indeed find that
$$\hat{H}=\int_{\mathbb{R}^3} \mathrm{d}^3 \vec{p} \omega_{\vec{p}} \hat{a}^{\dagger}(\vec{p}) \hat{a}(\vec{p}).$$
It's important, particularly in the beginning to somehow distinguish between usual real or complex numbers and operators. Above, I've written a hat above operators. Of course the operators are all linear operators on Hilbert space and thus commute with all usual real or complex numbers!
 
But does $$P^{2}$$ commute with$$e^{ipx}$$ or how can I perform this commutation?
 
In the above equation ##P^2## is obviously ##\vec{p}^2## and thus a real number, which commutes with all operators. Unfortunately I don't have my copy of Srednicky's book here; so I can't look at the context right now.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...

Similar threads

Back
Top