A Canonical transformation - derviation problem

AI Thread Summary
The discussion focuses on understanding why integrands can differ by a total time derivative without affecting the value of integrals, which is crucial for grasping generating functions and Hamilton-Jacobi functions. The key point is that adding a total time derivative of a function M to the Lagrangian does not alter the motion described by it, as demonstrated in Proposition 2.10. This is illustrated through the definition of the action, showing that the variation in the action remains unchanged despite the addition of the time derivative term. The equivalence of the conditions for stationary action (δS' = 0 and δS = 0) is emphasized. Understanding this concept is essential for progressing in canonical transformations and related topics in mechanics.
Vicol
Messages
14
Reaction score
0
Let me show you part of a book "Mechanics From Newton’s Laws to Deterministic Chaos" by Florian Scheck.

OV5cnfT.png


I do not understand why these integrands can differ by more than time derivative of some function M. Why doesn't it change the value of integrals?

It seems this point is crucial for me to get into generating functions (and then to Hamilton-Jacobi functions) but I won't proceed until I fully understand derviations. So can anyone explain mathematical story of the derviation?
 

Attachments

  • OV5cnfT.png
    OV5cnfT.png
    46.6 KB · Views: 1,167
Physics news on Phys.org
The claim depends on Proposition 2.10 so it is more likely that help can be provided if you can show Proposition 2.10.
 
fMWckum.png
 

Attachments

  • fMWckum.png
    fMWckum.png
    42.6 KB · Views: 927
That's because the Hamiltionian function is defined as the "Legendre Transformation" of the Lagrangian function or, in practice:

$$H = \sum \frac{\partial L}{\partial \dot{q_i}} \dot{q_i} - L $$ so the integrand function in (2.78) is nothing but the Lagrangian function. As you should know and as the proposition 2.10 says (and proves!) adding the total time derivative of a function ##M(q,t)## to the Lagrangian does not affect the motion described by the Lagrangian itself. You can visualize it by this way:

Let ##L(q, \dot{q}, t)## be a Lagrangian function, we now define ##L'(q, \dot{q}, t)= L(q, \dot{q}, t) + \frac{dM(q,t)}{dt}##. We define the action as
$$ S' = \int_{t_1} ^{t_2} L'(q,\dot{q}, t)dt = \int_{t_1} ^{t_2} L(q,\dot{q}, t) dt + \int_{t_1} ^{t_2} \frac{dM(q,t)}{dt} dt = S + M(q_2,t_2) - M(q_1,t_1) = S + constant$$
where clearly ## S= \int_{t_1} ^{t_2} L(q,\dot{q}, t)dt##. Now you can se that the condition ## \delta S' = 0## is perfectly equivalent to ##\delta S=0##.
 
  • Like
Likes Vicol
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top