Capacitor with dielectric as spring

AI Thread Summary
The discussion revolves around calculating the fractional change in the gap between the plates of an ideal capacitor with an elastic dielectric. The user attempts to relate the energy stored in the capacitor to the work done on the dielectric, using equations for capacitance and energy. A key point raised is the need to consider the forces exerted by the electric field and the restoring force of the dielectric. The energy balance equation is suggested to include contributions from the battery and the work done by the force. Participants emphasize the importance of providing hints rather than complete solutions to aid learning.
Muthumanimaran
Messages
79
Reaction score
2

Homework Statement


Two parallel plates of metal sandwich a dielectric pad of thickness d, forming an ideal
capacitor of capacitance C. The dielectric pad is elastic, having a spring constant k. If an
ideal battery of voltage V across its terminals is connected to the two plates of this
capacitor, the fractional change $ \frac{\delta{d}}{d} $ in the gap between the plates is

Homework Equations


$$C=\frac{\epsilon{A}}{d}$$
$$U=\frac{1}{2}CV^2$$
$$U=\frac{1}{2}k\delta{d}^2$$

The Attempt at a Solution



The Capacitance of the capacitor is $U=\frac{1}{2}CV^2$, when the dielectric is elastic the workdone in compressing/elongating the material of spring constant 'k' is $U=\frac{1}{2}k\delta{d}^2$, the fractional change in the energy of the capacitor is $\frac{1}{2}CV^2-\frac{1}{2}k\delta{d}^2$, I don't know what I have done is correct or not and I don't know how proceed from here as well. Please tell me whether my approach is not correct or give me a hint to solve the problem.
 
Physics news on Phys.org
I am pretty sure that you cannot equate change in electric field energy to change in spring energy. Perhaps the way to approach is to look at the force exerted on the plates, by the electric field.
 
Tricky problem since you must consider the fact that the battery gives or absorbs (you decide) energy also. So the energy balance equation is
old field energy + contributed battery energy + work done by force = new field energy + spring energy.
Hint: battery energy added = V ΔQ.

PS I couldn't decipher your latex in your section "The attempt at a solution".
 
Last edited:
  • Like
Likes scottdave
Due to presence of voltage V, the force between the plates of the capacitor will be equal to the restoring force of the dielectric pad of spring constant k. The dielectric displaces by a fractional distance ∆d(∆ represents small change)
Therefore the equation is,
Q^2/2A€ = k∆d (1)

Also, Q=CV (2)

Therefore, eqn(1) implies-
(CV)^2 = 2k∆d×A€ (3)
Also, C=A€/d (4)

Therefore, eqn(3) implies-
(CV)^2 = 2k∆d ×Cd
Dividing both sides by d^2, we get
(1/2 CV^2)/d^2 = k∆d/d

=> ∆d/d = (1/2CV^2)/kd^2.

€ stands for epsilon. Sorry couldn't find the right notation for epsilon.
I hope this helps.
 
  • Like
Likes Hitesh kotian
Hello ftRohan,

Welcome to Pysics Forums!

Please note for the future that it is against Forum rules to post complete or near-complete solutions to homework problems before the Original Poster has arrived at a correct solution by their own efforts. Helpers can only provide guidance via hints or pointing out errors in the OP's attempts.

Check out the pinned thread, https://www.physicsforums.com/threads/guidelines-for-students-and-helpers.686781/
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top